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The concave-convex procedure (CCCP) is an iterative algorithm that
solves d.c. (difference of convex functions) programs as a sequence of
convex programs. In machine learning, CCCP is extensively used in many
learning algorithms, including sparse support vector machines (SVMs),
transductive SVMs, and sparse principal component analysis. Though
CCCP is widely used in many applications, its convergence behavior
has not gotten a lot of specific attention. Yuille and Rangarajan analyzed
its convergence in their original paper; however, we believe the analy-
sis is not complete. The convergence of CCCP can be derived from the
convergence of the d.c. algorithm (DCA), proposed in the global opti-
mization literature to solve general d.c. programs, whose proof relies on
d.c. duality. In this note, we follow a different reasoning and show how
Zangwill’s global convergence theory of iterative algorithms provides a
natural framework to prove the convergence of CCCP. This underlines
Zangwill’s theory as a powerful and general framework to deal with the
convergence issues of iterative algorithms, after also being used to prove
the convergence of algorithms like expectation-maximization and gen-
eralized alternating minimization. In this note, we provide a rigorous
analysis of the convergence of CCCP by addressing two questions: When
does CCCP find a local minimum or a stationary point of the d.c. pro-
gram under consideration? and when does the sequence generated by
CCCP converge? We also present an open problem on the issue of local
convergence of CCCP.

1 Introduction

The concave-convex procedure (CCCP) (Yuille & Rangarajan, 2003) is a
popularly used algorithm to solve d.c. (difference of convex functions)
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programs of the form,

min
x

{
f (x) := u(x) − v(x) : fi(x) ≤ 0, i ∈ [m]

}
, (1.1)

where u, v, and { fi}m
i=1 are real-valued convex functions, all defined on R

n.
Here, [m] := {1, . . . , m}. Suppose v is differentiable. The CCCP algorithm is
an iterative procedure that solves equation 1.1 as the following sequence of
convex programs:

x(l+1) ∈ arg min
x

{
u(x) − xT∇v(x(l)) : fi(x) ≤ 0, i ∈ [m]

}
. (1.2)

As can be seen from equation 1.2, the idea of CCCP is to linearize the concave
part of f, which is −v, around a solution obtained in the current iteration so
that u(x) − xT∇v(x(l)) is convex in x, and therefore the nonconvex program
in equation 1.1 is solved as a sequence of convex programs as shown in
equation 1.2. CCCP has been extensively used in solving many noncon-
vex programs of the form in equation 1.1 that appear in machine learning.
For example, Bradley and Mangasarian (1998) proposed a successive lin-
ear approximation (SLA) algorithm for feature selection in support vector
machines, which can be seen as a special case of CCCP. Other applications
where CCCP has been used include sparse principal component analysis
(Sriperumbudur, Torres, & Lanckriet, 2007), transductive SVMs (Fung &
Mangasarian, 2001; Collobert, Sinz, Weston, & Bottou, 2006; Wang, Shen, &
Pan, 2007), feature selection in SVMs (Neumann, Schnörr, & Steidl, 2005),
structured estimation (Do, Le, Teo, Chapelle, & Smola, 2009), and missing
data problems in gaussian processes, and SVMs (Smola, Vishwanathan, &
Hofmann, 2005).

The algorithm in equation 1.2 starts at some random point x(0) ∈ � :=
{x : fi(x) ≤ 0, i ∈ [m]}, iteratively solves the program in the equation 1.2,
and therefore generates a sequence {x(l)}∞l=0. The goal of this note is to study
the convergence of {x(l)}∞l=0: When does CCCP find a local minimum or a
stationary point of the program in equation 1.1?1 Does {x(l)}∞l=0 converge?
If so, to what and under what conditions? From a practical perspective,
these questions are highly relevant, given that CCCP is widely applied in
machine learning.

In their original CCCP paper, Yuille and Rangarajan (2003, theorem 2)
analyzed its convergence, but we believe the analysis is not complete. They
showed that {x(l)}∞l=0 satisfies the monotone descent property, f (x(l+1)) ≤

1x∗ is said to be a stationary point of a constrained optimization problem if it satisfies
the corresponding Karush-Kuhn-Tucker (KKT) conditions. Assuming constraint qualifi-
cation, KKT conditions are necessary for the local optimality of x∗. See Bonnans, Gilbert,
Lemaréchal, and Sagastizábal (2006, section 11.3) for details.
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f (x(l)), and argued that this property ensures the convergence of {x(l)}∞l=0 to
a minimum or saddle point of the program in equation 1.1. However, their
analysis is not complete, as the monotone descent property by itself is not
sufficient to claim the convergence of {x(l)}∞l=0.

In the d.c. programming literature, Pham Dinh and Le Thi (1997) pro-
posed a primal-dual subdifferential method called the DCA (d.c. algorithm)
for solving general d.c. programs of the form min{u(x) − v(x) : x ∈ R

n},
where it is assumed that u and v are proper lower semicontinuous convex
functions, which form a larger class of convex functions than the class of
differentiable convex functions (note that in the case of CCCP, v is assumed
to be differentiable). Unlike in CCCP, DCA involves constructing two sets
of convex programs (called the primal and dual programs) and solving
them iteratively in succession such that the solution of the primal is the
initialization to the dual and vice versa. However, when v is differentiable,
DCA and CCCP can be shown to be equivalent. Pham Dinh and Le Thi
(1997, theorem 3) provide a proof for the convergence of DCA for general
d.c. programs, which therefore proves the convergence of CCCP. The proof
exploits d.c. duality (and follows an approach that is tailored specifically
to d.c. programs solved by DCA). We refer readers to section 2 for a brief
review of d.c. duality and a summary of convergence results for DCA.

In this note, we follow a fundamentally different approach and show
that the convergence of CCCP, specifically, can be analyzed by relying on
Zangwill’s (1969) global convergence theory of iterative algorithms. The
tools employed in our proof are of a completely different flavor from the
ones used in the proof of DCA convergence: DCA convergence analysis
exploits d.c. duality, while we use the notion of point-to-set maps as intro-
duced by Zangwill. Zangwill’s theory is a powerful and general framework
to deal with the convergence issues of iterative algorithms. It has also
been used to prove the convergence of the expectation-maximization (EM)
algorithm (Wu, 1983), generalized alternating minimization algorithms
(Gunawardana & Byrne, 2005), multiplicative updates in nonnegative
quadratic programming (Sha, Lin, Saul, & Lee, 2007), and so on and is
therefore a natural framework to analyze the convergence of CCCP in a
direct way.

The paper is organized as follows. Following Pham Dinh and Le Thi
(1997, 1998), in section 2, we review d.c. duality and summarize the con-
vergence results obtained for DCA. In section 3, we present Zangwill’s
theory of global convergence, a general framework to analyze the conver-
gence behavior of iterative algorithms. This theory is used to address the
global convergence of CCCP in section 4.1. This involves analyzing the
fixed points of the CCCP algorithm in equation 1.2 and then showing that
the fixed points are the stationary points of the program in equation 1.1.
The results in section 4.1 are extended in section 4.2 to analyze the conver-
gence of the constrained concave-convex procedure that Smola et al. (2005)
proposed to deal with d.c. programs involving d.c. constraints (note that in
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contrast, CCCP in equation 1.2 deals with convex constraints). We briefly
discuss the local convergence issues of CCCP in section 5 and conclude the
section with an example and an open question.

2 Review of D.C. Duality, DCA, and Convergence of DCA

Let X = R
n, which means the dual space Y of X can be identified with X

itself. Suppose �0(X) is the set of all proper lower semicontinuous con-
vex functions on X. The conjugate function u∗ of u ∈ �0(X) is a function
belonging to �0(Y), defined as

u∗(y) = sup{xTy − u(x) : x ∈ X}.

Pham Dinh and Le Thi (1998) considered d.c. programs of the form

α = inf{ f (x) := u(x) − v(x) : x ∈ X}, (P)

where u, v ∈ �0(X). Note that this primal program, labeled P, can handle
the minimization of f over a closed convex subset, C of X. This is because
the constraint set, {x : x ∈ C}, can be absorbed into the objective function
through its indicator, χC(x) = 0, if x ∈ C, +∞ otherwise, and the modified
objective would be (u + χC) − v. Using the definition of conjugate functions,
we have

α = inf{u(x)−v(x) :x ∈ X}= inf{u(x)−sup{xTy − v∗(y) :y ∈ Y} : x ∈ X}
= inf{β(y) : y ∈ Y},

where β(y) = inf{u(x) − (xTy − v∗(y)) : x ∈ X}. It is clear that β(y) =
v∗(y) − u∗(y) if y ∈ dom v∗, and +∞ otherwise. Therefore, the dual problem
can be written as

α = inf{v∗(y) − u∗(y) : y ∈ dom v∗},

which is equivalent to

α = inf{v∗(y) − u∗(y) : y ∈ Y}. (D)

The perfect symmetry between the primal program (P) and the dual
program (D) is referred to as the d.c. duality.
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Based on the above d.c. duality, Pham Dinh and Le Thi (1997, 1998)
proposed DCA, which involves constructing two sets of sequences {x(l)}
and {y(l)}, starting from a given point x(0) ∈ dom u, by setting

y(l) ∈ ∂v
(
x(l)); x(l+1) ∈ ∂u∗(y(l)),

where ∂v(x(0)) is the subdifferential of v at x(0), that is, ∂v(x(0)) = {y ∈ R
n :

v(x) ≥ v(x(0)) + (x − x(0))Ty, ∀ x ∈ R
n}. Lemma 3.6 in Pham Dinh and Le

Thi (1998) shows that the sequences {x(l)} and {y(l)} are well defined if and
only if dom ∂u ⊂ dom ∂v and dom ∂v∗ ⊂ dom ∂u∗. DCA can be interpreted
as follows: at each iteration l, we have

y(l) ∈ ∂v
(
x(l)) = arg min

{
v∗(y)−(

u∗(y(l−1)
)

+ (
y − y(l−1)

)T
x(l)) : y ∈ Y

}
, (Dl )

x(l+1) ∈ ∂u∗(y(l)) = arg min
{
u(x) − (

v
(
x(l)) + (

x − x(l))T
y(l)) : x ∈ X

}
.

(Pl )

Note that Pl is a convex program obtained from P by replacing v with its
affine minorization defined by y(l) ∈ ∂v(x(l)). Similarly, the convex prob-
lem Dl is obtained from D by using the affine minorization of u∗ de-
fined by x(l+1) ∈ ∂u∗(y(l)). Suppose v is differentiable. Then DCA reduces to
CCCP:

x(l+1) ∈ ∂u∗(∇v(x(l))) = arg min
{
u(x) − (

v
(
x(l)) + (

x − x(l))T∇v
(
x(l)))

: x ∈ X
}

= arg min
{
u(x) − xT∇v

(
x(l)) : x ∈ X

}
.

We now summarize the convergence of DCA for general d.c. programs. To
do that, we need some definitions. A point x∗ is said to be a critical point
of u − v if ∂u(x∗) ∩ ∂v(x∗) �= ∅. If u and v are differentiable, then x∗ is a
stationary point of u − v as ∇u(x∗) = ∇v(x∗). Let ρ ≥ 0 and C be a convex
subset of X. A function θ : C → R ∪ {+∞} is said to be ρ-convex if

θ (λx + (1 − λ)x′) ≤ λθ(x) + (1 − λ)θ (x′) − λ(1 − λ)

2
ρ‖x − x′‖2

2,

∀ λ ∈ (0, 1), ∀ x, x′ ∈ C,

where ‖x‖2
2 = xTx. This is equivalent to saying that θ − ρ

2 ‖ · ‖2
2 is convex on

C. The modulus of strong convexity of θ on C, denoted by ρ(θ,C) is given
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by ρ(θ,C) = sup{ρ ≥ 0 : θ − ρ

2 ‖ · ‖2
2 is convex on C}. θ is said to be strongly

convex on C if ρ(θ,C) > 0.

Convergence of DCA.

1. Pham Dinh and Le Thi (1998, theorem 3.7) showed that DCA is a
descent method for both P and D: (u − v)(x(l+1)) ≤ (v∗ − u∗)(y(l)) ≤
(u − v)(x(l)) with equality if x(l) ∈ ∂u∗(y(l)), y(l) ∈ ∂v(x(l)), u, v are
strongly convex on X and u∗, v∗ are strongly convex on Y. In addi-
tion, when equality holds, x(l) and y(l) are the critical points of P and
D respectively.

2. If α is finite, then the decreasing sequences {(u − v)(x(l))} and
{(v∗ − u∗)(y(l))} converge to the same limit β ≥ α, that is, liml→∞(u −
v)(x(l)) = liml→∞(v∗ − u∗)(y(l)) = β. In addition, if the sequences {x(l)}
and {y(l)} are bounded, then for every limit point x∗ of {x(l)} (resp. y∗ of
{y(l)}), there exists a limit point y∗ of {y(l)} (resp. x∗ of {x(l)}) such that
(u − v)(x∗) = (v∗ − u∗)(y∗) = β. This means that every limit point x∗

of {x(l)} is a critical point of u−v.
3. The convergence of the whole sequence {x(l)} (resp. {y(l)}) can be en-

sured if the following hold: {x(l)} is bounded, the set of limit points of
{x(l)} is finite, and liml→∞ ‖x(l+1) − x(l)‖ = 0.

Having summarized the convergence properties of DCA (and therefore
of CCCP), in section 4, we state and prove the convergence results for CCCP
using a completely different framework, Zangwill’s global convergence
theory, which is briefly discussed in the following section.

3 Global Convergence Theory of Iterative Algorithms

For an iterative procedure like CCCP to be useful, it must converge to a local
optimum or a stationary point from all or at least a significant number of
initialization states and not exhibit other nonlinear system behaviors, such
as divergence or oscillation. This behavior can be analyzed by using the
global convergence theory of iterative algorithms developed by Zangwill
(1969). Note that the term global convergence is a misnomer. We will clarify
it below and also introduce some notation and terminology.

To understand the convergence of an iterative procedure like CCCP, we
need to understand the notion of a set-valued mapping, or point-to-set
mapping, which is central to the theory of global convergence.2 A point-
to-set map � from a set X into a set Y is defined as � : X → P(Y), which

2Note that depending on the objective and constraints, the minimizer of equation 1.2
need not be unique. Therefore, the algorithm takes x(l) as its input and returns a set of
minimizers from which an element, x(l+1) is chosen. Hence, the notion of point-to-set
maps appears naturally in such iterative algorithms.



Convergence of the Concave-Convex Procedure 1397

assigns a subset of Y to each point of X, where P(Y) denotes the power set
of Y. We introduce some definitions related to the properties of point-to-set
maps that will be used later. Suppose X and Y are two topological spaces.
A point-to-set map � is said to be closed at x0 ∈ X if xk → x0 as k → ∞,
xk ∈ X and yk → y0 as k → ∞, yk ∈ �(xk), imply y0 ∈ �(x0). This concept
of closure generalizes the concept of continuity for ordinary point-to-point
mappings. A point-to-set map � is said to be closed on S ⊂ X if it is closed
at every point of S. A fixed point of the map � : X → P(X) is a point x
for which {x} = �(x), whereas a generalized fixed point of � is a point for
which x ∈ �(x). � is said to be uniformly compact on X if there exists a
compact set H independent of x such that �(x) ⊂ H for all x ∈ X. Note that
if X is compact, then � is uniformly compact on X. Let φ : X → R be a
continuous function. � is said to be monotone with respect to φ whenever
y ∈ �(x) implies that φ(y) ≤ φ(x). If, in addition, y ∈ �(x) and φ(y) = φ(x)

imply that y = x, then we say that � is strictly monotone.
Many iterative algorithms in mathematical programming can be de-

scribed using the notion of point-to-set maps. Let X be a set and x0 ∈ X
a given point. Then an algorithm, A, with initial point x0 is a point-to-
set map A : X → P(X), which generates a sequence {xk}∞k=1 via the rule
xk+1 ∈ A(xk), k = 0, 1, . . . A is said to be globally convergent if for any cho-
sen initial point x0, the sequence {xk}∞k=0 generated by xk+1 ∈ A(xk) (or a
subsequence) converges to a point for which a necessary condition of op-
timality holds. The property of global convergence expresses, in a sense,
the certainty that the algorithm works. It is very important to stress that it
does not imply (contrary to what the term might suggest) convergence to a
global optimum for all initial points x0.

With these concepts in place, we now state Zangwill’s global convergence
theorem (Zangwill, 1969):

Theorem 1. Let A : X → P(X) be a point-to-set map (an algorithm) that given
a point x0 ∈ X generates a sequence {xk}∞k=0 through the iteration xk+1 ∈ A(xk).
Also let a solution set Γ ⊂ X be given. Suppose

1. All points xk are in a compact set S ⊂ X.
2. There is a continuous function φ : X → R such that:

a. x /∈ Γ ⇒ φ(y) < φ(x), ∀ y ∈ A(x).
b. x ∈ Γ ⇒ φ(y) ≤ φ(x), ∀ y ∈ A(x).

3. A is closed at x if x /∈ Γ .

Then the limit of any convergent subsequence of {xk}∞k=0 is in Γ . Furthermore,

lim
k→∞

φ(xk) = φ(x∗)

for all limit points x∗.
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The general idea when proving the global convergence of an algorithm,
A is to invoke theorem 1 by appropriately defining φ and �. For an algorithm
A that solves the minimization problem, min{ f (x) : x ∈ �}, the solution set,
�, is usually chosen to be the set of corresponding stationary points, and φ

can be chosen to be the objective function itself, that is, f, if f is continuous. In
theorem 1, the convergence of φ(xk) to φ(x∗) does not automatically imply
the convergence of xk to x∗. However, if A is strictly monotone with respect
to φ, then theorem 1 can be strengthened by using the following result due
to Meyer (1976, theorem 3.1, corollary 3.2):

Theorem 2. Let A : X → P(X) be a point-to-set map such that A is uniformly
compact, closed, and strictly monotone on X, where X is a closed subset of R

n. If
{xk}∞k=0 is any sequence generated by A, then all limit points will be fixed points of
A, φ(xk) → φ(x∗) =: φ∗ as k → ∞, where x∗ is a fixed point, ‖xk+1 − xk‖ → 0,
and either {xk}∞k=0 converges or the set of limit points of {xk}∞k=0 is connected. Define
F (a ) := {x ∈ F : φ(x) = a} where F is the set of fixed points of A. If F (φ∗) is
finite, then any sequence {xk}∞k=0 generated by A converges to some x∗ in F (φ∗).

Using these results on the global convergence of algorithms, Wu (1983)
has studied the convergence properties of the EM algorithm, while Gu-
nawardana and Byrne (2005) analyzed the convergence of generalized al-
ternating minimization procedures. In the following section, we use these
results to analyze the convergence of CCCP.

4 Main Results

In section 4.1, we analyze the global convergence of CCCP. In section 4.2,
we extend these results and present a global convergence theorem for the
constrained concave-convex procedure, a generalization of CCCP proposed
by Smola et al. (2005) to deal with d.c. programs involving d.c. constraints.
Proofs for the results in sections 4.1 and 4.2 are provided in section 4.3.

4.1 Convergence Theorems for CCCP. To analyze the global conver-
gence of the CCCP algorithm in equation 1.2, pertaining to the d.c. program
in equation 1.1, we consider the point-to-set map Acccp, defined as

Acccp(y) = arg min
x

{
u(x) − xT∇v(y) : x ∈ �

}
, (4.1)

where � := {x : fi(x) ≤ 0, i ∈ [m]}. We now present two global convergence
theorems for CCCP.

Theorem 3 (Global convergence of CCCP—I). Let u, { fi }m
i=1 be real-valued

continuous convex functions and v be a real-valued differentiable convex function,
all defined on R

n. Suppose ∇v is continuous. Let {x(l)}∞l=0 be any sequence gen-
erated by Acccp defined by equation 4.1. Suppose Acccp is uniformly compact on
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Ω := {x : fi (x) ≤ 0, i ∈ [m]} and Acccp(x) is nonempty for every x ∈ Ω .3 Then,
assuming suitable constraint qualification, all the limit points of {x(l)}∞l=0 are gener-
alized fixed points of Acccp, which are stationary points of equation 1.1.4 In addition
lim
l→∞

(u(x(l)) − v(x(l))) = u(x∗) − v(x∗), where x∗ is some generalized fixed point of

Acccp.

Remark. Note that if � is compact, then Acccp is uniformly compact on
�. In addition, since u is continuous on �, by the Weierstrass theorem
(Minoux, 1986), it follows that Acccp(x) is nonempty for every x ∈ � and
therefore is also closed on � (by lemma 1; see the appendix).5 Therefore,
the assumptions of uniform compactness and nonemptiness of Acccp are
trivially satisfied if � is compact.

The result obtained in theorem 3 is similar to the convergence result
for DCA but with slightly stronger assumptions. In theorem 3, we require
u to be continuous, v to be differentiable, and ∇v to be continuous while
DCA requires u and v to be lower semicontinuous convex functions on
R

n. However, the assumptions on u and v as mentioned in theorem 3 are
usually satisfied in machine learning applications, the examples of which
include sparse principal component analysis (Sriperumbudur et al., 2007),
feature selection in SVMs (Neumann et al., 2005), and transductive SVMs
(Collobert et al., 2006).

In theorem 3, we considered the generalized fixed points of Acccp. The
disadvantage with this case is that it does not rule out “oscillatory” behav-
ior (Meyer, 1976). To elaborate, let us consider {x∗} ⊂ Acccp(x∗). For exam-
ple, let �0 = {x1, x2} and let Acccp(x1) = Acccp(x2) = �0 and u(x1) − v(x1) =
u(x2) − v(x2) = 0. Then the sequence {x1, x2, x1, x2, . . .} could be generated
by Acccp, with the convergent subsequences converging to the generalized
fixed points x1 and x2. Such an oscillatory behavior can be avoided if we
ensure Acccp to have fixed points instead of generalized fixed points. With
appropriate assumptions on u, the following stronger result can be obtained
on the convergence of CCCP.

Theorem 4 (Global convergence of CCCP—II). Let u be a real-valued strictly
convex function { fi }m

i=1 be real-valued continuous convex functions, and v be a
differentiable convex function with continuous ∇v, all defined on R

n. Let {x(l)}∞l=0
be any sequence generated by Acccp defined by equation 4.1. Suppose Acccp is

3Instead of uniform compactness, one could also assume that for every x ∈ Ω , the set
H(x) := {y : u(y) − u(x) ≤ v(y) − v(x), y ∈ Acccp(Ω)} is bounded for the claims in theorem
3 to hold.

4Examples include Slater’s qualification and Mangasarian-Fromovitz qualification,
among others. See Bonnans et al. (2006).

5The Weierstrass theorem states: If f is a real-valued continuous function on a compact
set K ⊂ R

n, then the problem min{ f (x) : x ∈ K} has an optimal solution x∗ ∈ K.
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uniformly compact on Ω := {x : fi (x) ≤ 0, i ∈ [m]} and Acccp(x) is nonempty for
every x ∈ Ω . Then, assuming suitable constraint qualification, all the limit points
of {x(l)}∞l=0 are fixed points of Acccp, which are stationary points of the d.c. program
in equation 1.1, u(x(l)) − v(x(l)) → u(x∗) − v(x∗) =: f ∗ as l → ∞, for some fixed
point x∗ (also a stationary point of equation 1.1), ‖x(l+1) − x(l)‖ → 0, and either
{x(l)}∞l=0 converges or the set of limit points of {x(l)}∞l=0 is a connected and compact
subset of S ( f ∗), where S (a ) := {x ∈ S : u(x) − v(x) = a} and S is the set of
fixed points of Acccp. If S ( f ∗) is finite, then any sequence {x(l)}∞l=0 generated by
Acccp converges to some x∗ in S ( f ∗).

Note that the main difference between the assumptions in theorems 3
and 4 is that u is assumed to be strictly convex in theorem 4. This is not a
strong assumption as it can be achieved as follows. Suppose u is convex but
not strictly convex. Let t be a real-valued strictly convex function defined
on R

n. Then ũ := u + t is strictly convex on R
n and

f := u − v = (u + t) − (v + t) =: ũ − ṽ.

If t is continuously differentiable with ∇t continuous (for, e.g., t(x) =
λ‖x‖2

2, λ > 0), then it is clear that ũ and ṽ satisfy the conditions in theorem 4,
which means with the same assumptions of theorem 3, we obtain a stronger
result in theorem 4. However, since theorem 4 is applied to ũ and ṽ, it has to
be noted that the sequence {x(l)}∞l=0 is generated by the following point-to-set
map,

Acccp(y) = arg min
x

{
u(x) + t(x) − xT (∇v(y) + ∇t(y)

)
: x ∈ �

}
, (4.2)

instead of equation 4.1, which is the point-to-set map corresponding to
theorem 3, which is applied to u and v.

Given the stronger guarantees about the convergence behavior of {x(l)}∞l=0
in equation 4.2, as provided by theorem 4, it may be preferable to use
equation 4.2 instead of 4.1 to solve equation 1.1 when u is convex (but not
strictly convex). On the other hand, equation 4.1 may be computationally
simpler and more efficient to solve than equation 4.2—for example, if u is
linear and � is a polyhedral set. In case the latter is more desirable, then
theorem 3 can be used to provide convergence guarantees so that theorem 3
is not completely redundant.

From theorem 4, it should be clear that convergence of f (x(l)) to f ∗ does
not automatically imply the convergence of x(l) to x∗. The convergence in
the latter sense requires more stringent conditions like the finiteness of the
set of stationary points of equation 1.1 that assume the value of f ∗. Note
that a similar condition of the set of limit points of {x(l)} being finite is also
required for the convergence of the whole DCA sequence.

4.2 Extensions. So far, we have considered d.c. programs where the
constraint set is convex and analyzed the global convergence behavior of
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CCCP—using Zangwill’s theory—that is used to solve such programs. In
the following, we consider general d.c. programs where the constraints
need not be convex and present the global convergence analysis (using
Zangwill’s theory) of an iterative algorithm (which is an extension of CCCP)
that solves such general d.c. programs. Note that DCA can be used to solve
such general d.c. programs (see equation 4.3) whose convergence properties
are summarized in section 2.6

Let us consider a general d.c. program (Horst & Thoai, 1999), given by

min
x

{
u0(x) − v0(x) : ui(x) − vi(x) ≤ 0, i ∈ [m]

}
, (4.3)

where {ui}m
i=0, {vi}m

i=0 are real-valued continuous convex functions defined
on R

n with {vi}m
i=0 being continuously differentiable. While dealing with

kernel methods for missing variables, Smola et al. (2005) encountered a
problem of the form in equation 4.3 for which they proposed a constrained
concave-convex procedure given by

x(l+1) ∈ arg min
x

{
u0(x) − v̂0(x; x(l)) : ui(x) − v̂i(x; x(l)) ≤ 0, i ∈ [m]

}
,

(4.4)

where

v̂i

(
x; x(l)) := vi

(
x(l)) + (

x − x(l))T∇vi

(
x(l)).

6While equation 4.3 is not a d.c. program in the sense of equation 1.1 where the
constraint set is convex, an exact penalty approach can be used to transform equation 4.3
into a d.c. program. Consider a modified form of equation 4.3,

min
x

{
u0(x) − v0(x) : ui(x) − vi(x) ≤ 0, i ∈ [m], x ∈ K

}
, (A)

where K is a nonempty closed convex set in R
n. A penalty approach penalizes the con-

straints and introduces the following nondifferentiable d.c. program:

min
x

{
u0(x) + t

m∑
i=1

max
(
ui(x), vi(x)

) −
(

v0(x) + t
m∑

i=1

vi(x)

)
: x ∈ K

}
, (B)

with t > 0, which can be solved using DCA. To solve general d.c. programs via DCA on
equation B (note that to apply DCA to equation B, the continuity and differentiability
conditions on {ui}m

i=0 and {vi}m
i=0 mentioned in the paragraph following equation 4.3 are

not needed), exact penalty must hold, that is, the existence of t0 ≥ 0 such that equations A
and B are equivalent for all t > t0. As far as we know, the existence of such t0 is guaranteed
if K is a nonempty bounded polyhedral convex set in R

n and the feasible set of equation A
is nonempty. See Pham Dinh and Le Thi (1997, section 8.1) and Le Thi, Pham Dinh, and
Le Dung (1999).
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Note that similar to CCCP, the algorithm in equation 4.4 is a sequence of
convex programs. Although Smola et al. (2005, theorem 1) provided some
convergence analysis for the algorithm in equation 4.4, their analysis is not
complete due to the fact that the convergence of {x(l)}∞l=0 is assumed. In this
section, we provide its convergence analysis, following an approach similar
to what we did for CCCP, by considering a point-to-set map Bc−ccp, associ-
ated with the iterative algorithm in equation 4.4, where x(l+1) ∈ Bc−ccp(x

(l)).
Note that unlike in equation 1.2, the constraint set in equation 4.4 varies with
l and {x : ui(x) − v̂i(x; x(l)) ≤ 0, i ∈ [m]} ⊂ {x : ui(x) − vi(x) ≤ 0, i ∈ [m]} =:
� for any x(l), which therefore implies x(l+1) ∈ �. In theorem 5, we provide
the global convergence result for the constrained concave-convex proce-
dure, an equivalent version of theorem 4 for CCCP. Theorem 5 provides a
result similar to the convergence result for DCA but under slightly stronger
assumptions of {ui}m

i=0, ∇v0 being continuous and {vi}m
i=1 being differentiable

on R
n.

Theorem 5 (Global convergence of constrained CCP). Let u0 be a real-
valued continuous and strictly convex function, {ui }m

i=1 be real-valued continu-
ous convex functions, and {vi }m

i=0 be real-valued convex differentiable functions
with continuous ∇v0, all defined on R

n. Let {x(l)}∞l=0 be any sequence gener-
ated by Bc−ccp defined in equation 4.4. Suppose Bc−ccp is uniformly compact on
Ω := {x : ui (x) − vi (x) ≤ 0, i ∈ [m]} and Bc−ccp(x) is nonempty for every x ∈ Ω .
Then, assuming suitable constraint qualification, all the limit points of {x(l)}∞l=0 are
fixed points of Bc−ccp, which are stationary points of the d.c. program in equation
4.3, u0(x(l)) − v0(x(l)) → u0(x∗) − v0(x∗) =: f ∗ as l → ∞, for some fixed point, x∗
of Bc−ccp (also a stationary point of equation 4.3), ‖x(l+1) − x(l)‖ → 0, and either
{x(l)}∞l=0 converges or the set of limit points of {x(l)}∞l=0 is a connected and compact
subset of S ( f ∗), where S (a ) := {x ∈ S : u0(x) − v0(x) = a} and S is the set of
fixed points of Bc−ccp. If S ( f ∗) is finite, then any sequence {x(l)}∞l=0 generated by
Bc−ccp converges to some x∗ in S ( f ∗).

In the following section, we present the proofs of theorems 3, 4, and 5.

4.3 Proofs

Proof of Theorem 3. The assumption of Acccp being uniformly compact
on � ensures that condition 1 in theorem 1 is satisfied. Let � be the set
of all generalized fixed points of Acccp, and let φ = f = u − v. Because of
the descent property, f (x(l+1)) ≤ f (x(l)) as shown in Yuille and Rangarajan
(2003), condition 2 in theorem 1 is satisfied. By our assumption on u and
v, we have g(x, y) := u(x) − xT∇v(y) is continuous in x and y. Therefore,
by lemma 1 (in the appendix), the assumption of nonemptiness of Acccp(x)

for every x ∈ � ensures that Acccp is closed on � and so satisfies condition
3 in theorem 1. Therefore, by theorem 1, all the limit points of {x(l)}∞l=0 are
the generalized fixed points of Acccp and liml→∞(u(x(l)) − v(x(l))) = u(x∗) −
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v(x∗), where x∗ is some generalized fixed point of Acccp. We now show that
any generalized fixed point of Acccp is a stationary point of equation 1.1,
therefore proving the result.

Suppose x∗ is a generalized fixed point of Acccp, that is, x∗ ∈ Acccp(x∗).
Since the constraints in equation 4.1 are qualified at x∗, there exist Lagrange
multipliers {η∗

i }m
i=1 ⊂ R+ such that the following KKT conditions hold:⎧⎨⎩ 0 ∈ ∂u(x∗) − ∇v(x∗) +

m∑
i=1

η∗
i ∂ fi(x∗),

fi(x∗) ≤ 0, η∗
i ≥ 0, fi(x∗)η

∗
i = 0, ∀ i ∈ [m].

(4.5)

Equation 4.5 is exactly the set of KKT conditions of equation 1.1, which are
satisfied by (x∗, {η∗

i }), and therefore x∗ is a stationary point of equation 1.1.

Proof of Theorem 4. Since u is strictly convex, the strict descent property
holds, f (x(l+1)) < f (x(l)) unless x(l+1) = x(l), and therefore Acccp is strictly
monotone with respect to f. The assumption of nonemptiness of Acccp(x) for
every x ∈ � ensures that Acccp is closed on � (which follows from lemma 7
in the appendix). By assumption, since Acccp is uniformly compact on �,
invoking theorem 2 provides that all the limit points of {x(l)}∞l=0 are fixed
points of Acccp, which either converge or form a connected compact set.
Since any fixed point of Acccp is a generalized fixed point, which is also a
stationary point of equation 1.1 (see the proof of theorem 3), the desired
result follows.

Proof of Theorem 5. The proof is very similar to that of theorem 4.
Note that u0(x

(l+1)) − v0(x
(l+1)) ≤ u0(x

(l+1)) − v̂0(x
(l+1); x(l)) ≤ u0(x

(l)) −
v̂0(x

(l); x(l)) = u0(x
(l)) − v0(x

(l)). Since u0 is strictly convex, we have
u0(x

(l+1)) − v̂0(x
(l+1); x(l)) < u0(x

(l)) − v̂0(x
(l); x(l)) unless x(l+1) = x(l),

which means u0(x
(l+1)) − v0(x

(l+1)) < u0(x
(l)) − v0(x

(l)) unless x(l+1) = x(l)

and therefore Bc−ccp is strictly monotone. Since u0 and ∇v0 are continuous
and Bc−ccp(x) is nonempty for every x ∈ �, by invoking lemma 1, we obtain
that Bc−ccp is closed on �. The result therefore follows from theorem 2,
which shows that all the limit points of {x(l)}∞l=0 are fixed points of Bc−ccp,
which either converge or form a connected compact set. We now show that
any fixed point of Bc−ccp is a stationary point of equation 4.3.

Suppose x∗ is a fixed point of Bc−ccp and assume that constraints in
equation 4.4 are qualified at x∗. Then there exist Lagrange multipliers
{η∗

i }m
i=1 ⊂ R+ such that the following KKT conditions hold:⎧⎪⎪⎨⎪⎪⎩

0 ∈ ∂u0(x∗) − ∇v0(x∗) +
m∑

i=1
η∗

i (∂ui(x∗) − ∇vi(x∗)),

ui(x∗) − vi(x∗) ≤ 0,

η∗
i ≥ 0, i ∈ [m], (ui(x∗) − vi(x∗))η

∗
i = 0, i ∈ [m],

(4.6)
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which is exactly the KKT conditions for equation 4.3 satisfied by (x∗, {η∗
i })

and, therefore, x∗ is a stationary point of equation 4.3.

5 Local Convergence Analysis of CCCP

The study so far has been devoted to the global convergence analysis of
CCCP and the constrained concave-convex procedure. We say an algorithm
is globally convergent if for any chosen starting point, x0, the sequence
{xk}∞k=0 generated by xk+1 ∈ A(xk) converges to a point for which a necessary
condition of optimality holds. In the results so far, we have shown that all
the limit points of any sequence generated by CCCP (resp. its constrained
version) are the stationary points (local extrema or saddle points) of the
program in equation 1.1 (resp. 4.3). Suppose that x0 is chosen such that
it lies in an ε-neighborhood around a local minimum, x∗. Will the CCCP
sequence then converge to x∗? If so, what is the rate of convergence? These
are questions of local convergence.

Salakhutdinov, Roweis, and Ghahramani (2003) studied the local con-
vergence of bound optimization algorithms (of which CCCP is an example)
to compare the rate of convergence of such methods to that of gradient and
second-order methods. In their work, they considered the unconstrained
version of CCCP with Acccp as a point-to-point map that is differentiable.
They showed that, depending on the curvature of u and v, CCCP will
exhibit either quasi-Newton behavior with fast, typically superlinear con-
vergence or extremely slow, first-order convergence behavior. However,
extending these results to the constrained setup in equation 1.2 is not obvi-
ous. The following result due to Ostrowski, which can be found in Ortega
and Rheinboldt (1970, theorem 10.1.3), provides a way to study the local
convergence of iterative algorithms.

Proposition 1. Suppose that Ψ : U ⊂ R
n → R

n has a fixed point x∗ ∈ int(U)
and Ψ is Fréchet-differentiable at x∗. If the spectral radius, ρ(Ψ ′(x∗)) of Ψ ′(x∗)
satisfies ρ(Ψ ′(x∗)) < 1, and if x0 is sufficiently close to x∗, then the iterates {xk}
defined by xk+1 = Ψ (xk) all lie in U and converge to x∗.

We now discuss how proposition 1 can be used to study the local conver-
gence of CCCP. First note that the proposition treats � (in our case, Acccp)
as a point-to-point map, which can be obtained by choosing u to be strictly
convex so that x(l+1) is the unique minimizer of equation 1.2. Suppose, we
choose x∗ in proposition 1 to be a local minimum of equation 1.1. Then the
desired result of local convergence with at least a linear rate of convergence
is obtained if we show that ρ(A′

cccp(x∗)) < 1. However, currently we are
not aware of a way to compute the Fréchet differential of Acccp and, more-
over, to impose conditions on the functions in equation 1.2 so that Acccp is
a Fréchet-differentiable map. This is an open question coming out of this



Convergence of the Concave-Convex Procedure 1405

work. However, in the following, we present a simple example for which
Acccp is Fréchet differentiable and ρ(A′

cccp(x∗)) < 1.

Example. Consider the following nonconvex program,

min
x

{xTAx + bTx + c : Cx = d}, (5.1)

where A ∈ S
n (space of n × n symmetric matrices over R), b ∈ R

n, c ∈ R,
C ∈ R

m×n, and d ∈ R
m. Assume rank(C) = m, where m < n. Although the

objective in equation 5.1 need not be convex, it can be written as a difference
of convex functions:(

ρ‖x‖2
2 + bTx + c

) − (xT (ρIn − A)x),

where ρ > max(0, λmax(A)), so that ρIn − A is positive definite. Here In
denotes the n × n identity matrix and λmax(A) is the largest eigenvalue of
A. Define u(x) := ρ‖x‖2

2 + bTx + c and v(x) := xT (ρIn − A)x. Using CCCP,
equation 5.1 can be solved as

x(l+1) = arg min
x

{
ρ‖x‖2

2 + xT (b − 2(ρIn − A)x(l)) + c : Cx = d
}
. (5.2)

By solving the Lagrangian of equation 5.2, we get

x(l+1) =ρ−1(In − C+C)(ρIn− A)x(l) + C+d + (2ρ)−1(C+C − In)b, (5.3)

where C+ := CT (CCT )−1. Note that the point-to-point map Acccp, defined as
x(l+1) = Acccp(x

(l)) in equation 5.3, is linear and therefore is Fréchet differ-
entiable at any x ∈ R

n. Suppose A, C, and ρ are such that maxi∈[n](|λi|) < 1,
where {λi} are the eigenvalues of ρ−1(In − C+C)(ρIn − A), then the condi-
tions in proposition 1 are satisfied. Therefore, if x∗ is a local minimum of
Acccp, then choosing any x(0) that is sufficiently close to x∗ results in a se-
quence of iterates, {x(l)} converging to x∗ with a rate of convergence that is
at least linear.

6 Conclusion

The concave-convex procedure (CCCP) is widely used in machine learning.
In this note, we provide a proof of its global convergence by using results
from the global convergence theory of iterative algorithms. The proposed
approach is fundamentally different from that used for the convergence
of DCA. It illustrates the power and generality of Zangwill’s global con-
vergence theory as a framework for proving the convergence of iterative
algorithms. We briefly discuss the local convergence of CCCP and present
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an open question, the settlement of which would address the local conver-
gence behavior of CCCP.

Appendix: Supplementary Result

The following result from Gunawardana and Byrne (2005, proposition 7)
shows that the minimization of a continuous function forms a closed point-
to-set map.7 A similar sufficient condition is also provided in Wu (1983,
equation 10).

Lemma 1. Given a real-valued continuous function h on X × Y, define the
point-to-set map Ψ : X → P(Ω) by

Ψ (x) = arg min
y′∈ Ω ⊂ Y

h(x, y′) =
{

y : h(x, y) ≤ h(x, y′), ∀ y′ ∈ Ω ⊂ Y
}
. (A.1)

Then Ψ is closed at x if Ψ (x) is nonempty.
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