
2003/09/29 09:33

1 Kernel-based Integration of Genomic Data

using Semidefinite Programming

Gert R. G. Lanckriet

Department of Electrical Engineering and Computer Science
University of California Berkeley
Berkeley, CA, 94720
USA
gert@cs.berkeley.edu

Nello Cristianini

Department of Statistics
University of California Davis
Davis, CA, 95616
USA
nello@support-vector.net

Michael I. Jordan

Department of Statistics, Division of Computer Science
University of California Berkeley
Berkeley, CA, 94720
USA
jordan@cs.berkeley.edu

William Stafford Noble

Department of Genome Sciences
University of Washington
Seattle, WA, 98195
USA
noble@gs.washington.edu

An important challenge in bioinformatics is to leverage different descriptions of the
same data set, each capturing different aspects of the data. Many such sources
of information [about genes and proteins] are now available, such as sequence,

2003/09/29 09:33

2 Kernel-based Integration of Genomic Data using Semidefinite Programming

expression, protein and regulation information. More data types are going to be
available in the near future, such as array-based fitness profiles and protein-protein
interaction data from mass spectrometry. Recent work in bioinformatics – such
as gene function prediction, prediction of protein structure and localization, and
inference of regulatory and metabolic networks – could benefit significantly from
an approach that treats in a unified way the different types of information, merging
them into a single representation, rather than only using the description that is
judged to be the most relevant at hand.

This chapter describes a computational framework for integrating and drawing
inferences from a collection of genome-wide measurements. Each data set is repre-
sented via a kernel function, which defines generalized similarity relationships be-
tween pairs of entities, such as genes or proteins. The kernel representation is both
flexible and efficient, and provides a principled framework in which many types of
data can be represented, including vectors, strings, trees and graphs. Furthermore,
kernel functions derived from different types of data can be combined in a straight-
forward fashion—recent advances in the theory of kernel methods have provided
efficient algorithms to perform such combinations in an optimal way. These meth-
ods formulate the problem of optimal kernel combination as a convex optimization
problem that can be solved with semidefinite programming techniques.

After introducing the semidefinite programming techniques, we will use them
to investigate the problem of predicting membrane proteins in yeast as well as
predicting yeast functional classifications based on different types of information,
including amino acid sequences, hydropathy profiles, gene expression data, known
protein-protein interactions and known protein complexes. We show that a support
vector machine (SVM) trained from all of these data, using the combined kernel,
performs significantly better than the same algorithm trained on any single type of
data, and significantly better than previously-described approaches.

1.1 Introduction

Much research in computational biology involves drawing statistically sound infer-
ences from collections of data. For example, the function of an unannotated protein
sequence can be predicted based on an observed similarity between that protein
sequence and the sequence of a protein of known function. Related methodologies
involve inferring related functions of two proteins if they occur in fused form in some
other organism, if they co-occur in multiple species, if their corresponding mRNAs
share similar expression patterns, or if the proteins interact with one another.

It seems natural that, while all such data sets contain important pieces of
information about each gene or protein, the comparison and fusion of these data
should produce a much more sophisticated picture of the relations among proteins,
and a more detailed representation of each protein. Especially the recent availability
of multiple types of genome-wide data that provide biologists with complementary
views of a single genome, highlights the need for machine learning algorithms that

2003/09/29 09:33

1.1 Introduction 3

unify these views and exploit this fused representation. Combining information from
different sources contributes to forming a complete picture of the relations between
the different components of a genome, enhancing the total information about the
problem at hand.

In yeast, for example, for a given gene we typically know the protein it encodes,
that protein’s similarity to other proteins, its hydrophobicity profile, the mRNA
expression levels associated with the given gene under hundreds of experimental
conditions, the occurrences of known or inferred transcription factor binding sites
in the upstream region of that gene, the identities of many of the proteins that
interact with the given gene’s protein product or form a complex with it. Each of
these distinct data types provides one view of the molecular machinery of the cell.
In the near future, research in bioinformatics will focus more and more heavily on
methods of data fusion.

One problem with this approach, however, is that genomic data come in a wide
variety of data formats: expression data are expressed as vectors or time series;
protein sequence data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein-protein interactions are best
expressed as graphs, and so on.

This chapter presents a computational and statistical framework for integrating
heterogeneous descriptions of the same set of genes, proteins or other entities.
The approach relies on the use of kernel-based statistical learning methods that
have already proven to be very useful tools in bioinformatics (Jaakkola et al.,
1999; Brown et al., 2000; Furey et al., 2000; Zien et al., 2000). These methods
represent the data by means of a kernel function, which defines similarities between
pairs of genes, proteins, etc. Such similarities can be quite complex relations,
implicitly capturing aspects of the underlying biological machinery. One reason
for the success of kernel methods is that the kernel function takes relationships
that are implicit in the data and makes them explicit, so that it is easier to detect
patterns. Each kernel function thus extracts a specific type of information from a
given data set, thereby providing a partial description or view of the data. The
goal of this chapter is to find a kernel that best represents all of the information
available for a given statistical learning task. Given many partial descriptions of
the data, we solve the mathematical problem of combining them using a convex
optimization method known as semidefinite programming (SDP) (Boyd et al., 1994;
Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996). This SDP-based
approach (Lanckriet et al., 2002) yields a general methodology for combining many
partial descriptions of data that is statistically sound, as well as computationally
efficient and robust.

In order to demonstrate the feasibility of these methods, we describe two prob-
lems: identifying membrane proteins in yeast and predicting the function of yeast
proteins. The first problem, identifying membrane proteins in yeast, is relevant
considered that integral plasma membrane proteins serve several important com-
municative functions between the inside and the outside of the cell (Alberts et al.,
1998). Classifying a protein as a membrane protein or not based on protein sequence

2003/09/29 09:33

4 Kernel-based Integration of Genomic Data using Semidefinite Programming

is non-trivial and has been the subject of much previous research. The second prob-
lem, predicting the function of yeast proteins, is possibly even more relevant and
has also been studied before.

Both problems are typical statistical learning problems in which a single type
of feature derived from the protein sequence cannot provide the full story. We
demonstrate that incorporating knowledge derived from the amino acid sequences,
protein complex data, hydropathy profiles, gene expression data and known protein-
protein interactions significantly improves classification performance relative to
previously described methods and relative to our method trained on any single
type of data.

We begin by describing related work. Afterwards, the main ideas of the kernel ap-
proach to pattern analysis are explained and semidefinite programming techniques
introduced as an advanced instance of convex optimization. After presenting the
necessary ingredients, we describe how different kernels defined on different data
can be integrated using semidefinite programming techniques to provide a unified
description. Finally, we describe the two biological applications of membrane pro-
tein recognition and protein function prediction in yeast. We define a number of
kernels that are designed to capture different features of protein sequences, expres-
sion data, complex data and protein-protein interactions. We present computational
experiments that demonstrate the validity and power of the kernel approach to data
fusion, that outperforms the same kernel approach on any single type of data, as
well as previously-described approaches.

1.2 Related Work

Considerable work has been devoted to the problem of automatically integrating
genomic datasets, leveraging the interactions and correlations between them to
obtain more refined and higher-level information. Previous research in this field
can be divided into three classes of methods.

The first class treats each data type independently. Inferences are made separately
from each data type, and an inference is deemed correct if the various data agree.
This type of analysis has been used to validate, for example, gene expression and
protein-protein interaction data (Ge et al., 2001; Grigoriev, 2001; Mrowka et al.,
2003), to validate protein-protein interactions predicted using five different methods
(von Mering et al., 2002), and to infer protein function (Marcotte et al., 1999). A
slightly more complex approach combines multiple data sets using intersections and
unions of the overlapping sets of predictions (Jansen et al., 2002).

The second formalism to represent heterogeneous data is to extract binary
relations between genes from each data source, and represent them as graphs. As
an example, sequence similarity, protein-protein interaction, gene co-expression or
closeness in a metabolic pathway can be used to define binary relations between
genes. Several groups have attempted to compare the resulting gene graphs using
graph algorithms (Nakaya et al., 2001; Tanay et al., 2002), in particular to extract

2003/09/29 09:33

1.2 Related Work 5

clusters of genes that share similarities with respect to different sorts of data.
The third class of techniques uses statistical methods to combine heterogeneous

data. For example, Holmes and Bruno use a joint likelihood model to combine gene
expression and upstream sequence data for finding significant gene clusters (Holmes
and Bruno, 2000). Similarly, Deng et al. (2003b) use a maximum likelihood method
to predict protein-protein interactions and protein function from three types of
data. Alternatively, protein localization can be predicted by converting each data
source into a conditional probabilistic model and integrating via Bayesian calculus
(Drawid and Gerstein, 2000). The general formalism of graphical models, which
includes Bayesian networks and Markov random fields as special cases, provides a
systematic methodology for building such integrated probabilistic models. As an
instance of this methodology, Deng et al. (2003a) developed a Markov random field
model to predict yeast protein function. They found that the use of different sources
of information indeed improved prediction accuracy when compared to using only
one type of data.

This chapter describes a fourth type of data fusion technique, also statistical,
but of a more nonparametric and discriminative flavor. The method, described
in detail below, consists of representing each type of data independently as a
matrix of kernel similarity values. These kernel matrices are then combined to
make overall predictions. An early example of this approach, based on fixed sums
of kernel matrices, showed that combinations of kernels can yield improved gene
classification performance in yeast, relative to learning from a single kernel matrix
(Pavlidis et al., 2001). The current work takes this methodology further—we use a
weighted linear combination of kernels, and demonstrate how to estimate the kernel
weights from the data. This yields not only predictions that reflect contributions
from multiple data sources, but also yields an indication of the relative importance
of these sources.

The graphical model formalism, as exemplified by the Markov random field
model of Deng et al. (2003a), has several advantages in the biological setting. In
particular, prior knowledge can be readily incorporated into such models, with
standard Bayesian inference algorithms available to combine such knowledge with
data. Moreover, the models are flexible, accommodating a variety of data types
and providing a modular approach to combining multiple data sources. Classical
discriminative statistical approaches, on the other hand, can provide superior
performance in simple situations, by focusing explicitly on the boundary between
classes, but tend to be significantly less flexible and less able to incorporate
prior knowledge. As we discuss in this chapter, however, recent developments in
kernel methods have yielded a general class of discriminative methods that readily
accommodate non-standard data types (such as strings, trees and graphs), allow
prior knowledge to be brought to bear, and provide general machinery for combining
multiple data sources.

1.3 Kernel Methods

2003/09/29 09:33

6 Kernel-based Integration of Genomic Data using Semidefinite Programming

Kernel methods work by embedding data items (genes, proteins, etc.) into a vector
space F , called a feature space, and searching for linear relations in such a space.
This embedding is defined implicitly, by specifying an inner product for the feature
space via a positive semidefinite kernel function: k(x1,x2) = 〈Φ(x1), Φ(x2)〉, where
Φ(x1) and Φ(x2) are the embeddings of data items x1 and x2. Note that if all
we require in order to find those linear relations are inner products, then we do
not need to have an explicit representation of the mapping Φ, nor do we even
need to know the nature of the feature space. It suffices to be able to evaluate the
kernel function, which is often much easier than computing the coordinates of the
points explicitly. Evaluating the kernel on all pairs of data items yields a symmetric,
positive semidefinite matrix K known as the kernel matrix, which can be regarded
as a matrix of generalized similarity measures among the data points.

The kernel-based binary classification algorithm that we will describe in this
chapter, the 1-norm soft margin support vector machine (SVM) (Boser et al.,
1992; Schölkopf and Smola, 2002), forms a linear discriminant boundary in feature
space F , f(x) = wT Φ(x) + b, where w ∈ F and b ∈ R. Given a labelled sample
Sn = {(x1, y1), . . . , (xn, yn)}, w and b are optimized to maximize the distance
(“margin”) between the positive and negative class, allowing misclassifications
(therefore “soft margin”):

min
w,b,ξ

wT w + C

n∑

i=1

ξi (1.1)

subject to yi(wT Φ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

where C is a regularization parameter, trading off error against margin. By consid-
ering the corresponding dual problem of (1.1), one can prove (see, e.g., Schölkopf
and Smola, 2002) that the weight vector can be expressed as w =

∑n
i=1 αiyiΦ(xi),

where the support values αi are solutions of the following dual quadratic program
(QP):

max
α

2αT e−αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αT y = 0. (1.2)

The first stage of processing in a kernel method is thus to reduce the data by
computing the kernel matrix. Given this matrix, and given the labels yi, we can
throw away the original data; the problem of fitting the SVM to data reduces to an
optimization procedure that is based entirely on the kernel matrix and the labels.
Different kernels correspond to different embeddings of the data and thus can be
viewed as capturing different notions of similarity. For example, in a space derived
from amino acid sequences, two genes that are close to one another will have protein
products with very similar amino acid sequences. This amino acid space would be
quite different from a space derived from microarray gene expression measurements,
in which closeness would indicate similarity of the expression profiles of the genes.
Finally, an unlabelled data item xnew can be classified by computing the linear

2003/09/29 09:33

1.4 Semidefinite Programming (SDP) 7

function

f(xnew) = wT Φ(xnew) + b =
n∑

i=1

αiyik(xi,xnew) + b.

If f(xnew) is positive, then we classify xnew as belonging to class +1; otherwise, we
classify xnew as belonging to class −1.

1.4 Semidefinite Programming (SDP)

In this section we review the basic definition of semidefinite programming as well
as some important concepts and key results. Details and proofs can be found in
Boyd and Vandenberghe (2001).

Semidefinite programming (Nesterov and Nemirovsky, 1994; Vandenberghe and
Boyd, 1996; Boyd and Vandenberghe, 2001) deals with the optimization of convex
functions over the convex cone1 of symmetric, positive semidefinite matrices

P =
{
X ∈ Rp×p | X = XT , X º 0

}
,

or affine subsets of this cone. As explained before, every positive semidefinite
and symmetric matrix is a kernel matrix, and conversely, every kernel matrix is
symmetric and positive semidefinite. Therefore P can be viewed as a search space
for possible kernel matrices. This consideration leads to the key problem addressed
in this chapter — we wish to specify a convex cost function that will enable us to
learn the optimal kernel matrix within P using semidefinite programming.

1.4.1 Definition of Semidefinite Programming

A linear matrix inequality, abbreviated LMI, is a constraint of the form

F (u) := F0 + u1F1 + . . . + uqFq ¹ 0.

Here, u is the vector of decision variables, and F0, . . . , Fq are given symmetric p×p

matrices. The notation F (u) ¹ 0 means that the symmetric matrix F is negative
semidefinite. Note that such a constraint is in general a nonlinear constraint; the
term ”linear” in the name LMI merely emphasizes that F is affine in u. Perhaps
the most important feature of an LMI constraint is its convexity: the set of u that
satisfy the LMI is a convex set.

An LMI constraint can be seen as an infinite set of scalar, affine constraints.
Indeed, for a given u, F (u) ¹ 0 if and only if zT F (u)z ≤ 0 for every z; every
constraint indexed by z is an affine inequality, in the ordinary sense, i.e., the left-
hand side of the inequality is a scalar, composed of a linear term in u and a constant

1. S ⊆ Rd is a convex cone iff ∀x,y ∈ S, ∀λ, µ ≥ 0 : λx + µy ∈ S.

2003/09/29 09:33

8 Kernel-based Integration of Genomic Data using Semidefinite Programming

term. Alternatively, using a standard result from linear algebra, we may state the
constraint F (u) ¹ 0 as

∀Z ∈ P : trace(F (u)Z) ≤ 0. (1.3)

This can be seen by writing down the spectral decomposition of Z and using that
zT F (u)z ≤ 0 for every z.

A semidefinite program (SDP) is an optimization problem with a linear objective,
and linear matrix inequality and affine equality constraints.

Definition 1.1

A semidefinite program is a problem of the form

min
u

cT u (1.4)

subject to F j(u) = F j
0 + u1F

j
1 + . . . + uqF

j
q ¹ 0, j = 1, . . . , L

Au = b,

where u ∈ Rq is the vector of decision variables, c ∈ Rq is the objective vector, and
matrices F j

i = (F j
i)T ∈ Rp×p are given.

By convexity of their LMI constraints, SDPs are convex optimization problems. The
usefulness of the SDP formalism stems from two important facts. First, despite the
seemingly very specialized form of SDPs, they arise in a host of applications; second,
there exist ”interior-point” algorithms to globally solve SDPs that have extremely
good theoretical and practical computational efficiency (Vandenberghe and Boyd,
1996).

One very useful tool to reduce a problem to an SDP is the so-called Schur
complement lemma, which will be invoked later in this chapter.

Lemma 1.2

Schur complement lemma Consider the partitioned symmetric matrix

X = XT =

(
A B

BT C

)
,

where A,C are square and symmetric. If det(A) 6= 0, we define the Schur comple-
ment of A in X by the matrix S = C − BT A−1B. The Schur complement lemma
states that if A Â 0, then X º 0 if and only if S º 0.

To illustrate how this lemma can be used to cast a nonlinear convex optimization
problem as an SDP, consider the following result:

Lemma 1.3

The quadratically constrained quadratic program (QCQP)

min
u

f0(u) (1.5)

subject to fi(u) ≤ 0, i = 1, . . . , M,

2003/09/29 09:33

1.4 Semidefinite Programming (SDP) 9

with fi(u) , (Aiu + bi)T (Aiu + bi) − cT
i u − di, is equivalent to the semidefinite

programming problem:

min
u,t

t (1.6)

subject to

(
I A0u + b0

(A0u + b0)T c0
T u + d0 + t

)
º 0,

(
I Aiu + bi

(Aiu + bi)T cT
i u + di

)
º 0, i = 1, . . . , M.

This can be seen by rewriting the QCQP (1.5) as:

min
u,t

t

subject to t− f0(u) ≥ 0,

−fi(u) ≥ 0, i = 1, . . . , M.

Note that for a fixed and feasible u, t = f0 (u) is the optimal solution. The convex
quadratic inequality t− f0(u) = (t + c0

T u + d0)− (A0u + b0)T I−1(A0u + b0) ≥ 0
is now equivalent to the following LMI, using the Schur complement Lemma 1.2:

(
I A0u + b0

(A0u + b0)T c0
T u + d0 + t

)
º 0.

Similar steps for the other quadratic inequality constraints finally yield (1.6), an
SDP in standard form (1.4), equivalent to (1.5). This shows that a QCQP can be
cast as an SDP. Of course, in practice a QCQP should not be solved using general-
purpose SDP solvers, since the particular structure of the problem at hand can be
efficiently exploited. The above does show that QCQPs, and in particular, linear
programming problems, belong to the SDP family.

1.4.2 Duality

An important principle in optimization—perhaps even the most important principle—
is that of duality. To illustrate duality in the case of an SDP, we will first review
basic concepts in duality theory and then show how they can be extended to
semidefinite programming. In particular, duality will give insights into optimality
conditions for the semidefinite program.

Consider an optimization problem with n variables and m scalar constraints

min
u

f0(u) (1.7)

subject to fi(u) ≤ 0, i = 1, . . . , m,

where u ∈ Rn. In the context of duality, problem (1.7) is called the primal problem;
we denote its optimal value p∗. For now, we do not assume convexity.

2003/09/29 09:33

10 Kernel-based Integration of Genomic Data using Semidefinite Programming

Definition 1.4

Lagrangian The Lagrangian L : Rn+m → R corresponding to the minimization
problem (1.7) is defined as

L(u, λ) = f0(u) + λ1f1(u) + . . . + λmfm(u).

The λi ∈ R, i = 1, . . . ,m are called Lagrange multipliers or dual variables.

One can now notice that

h(u) = max
λ≥0

L(u,λ) =

{
f0(u) if fi(u) ≤ 0, i = 1, . . . , m

+∞ otherwise.
(1.8)

So, the function h(u) coincides with the objective f0(u) in regions where the
constraints fi(u) ≤ 0, i = 1, . . . , m are satisfied and h(u) = +∞ in infeasible
regions. In other words, h acts as a ”barrier” of the feasible set of the primal
problem. Thus we can as well use h(u) as objective function and rewrite the original
primal problem (1.7) as an unconstrained optimization problem:

p∗ = min
u

max
λ≥0

L(u, λ). (1.9)

The notion of weak duality amounts to exchanging the ”min” and ”max” operators
in the above formulation, resulting in a lower bound on the optimal value of the
primal problem. Strong duality refers to the case where this exchange can be done
without altering the value of the result: the lower bound is actually equal to the
optimal value p∗. While weak duality always hold, even if the primal problem (1.9)
is not convex, strong duality may not hold. However, for a large class of generic
convex problems, strong duality holds.

Lemma 1.5

Weak duality For all functions f0, f1, . . . , fm in (1.7), not necessarily convex, we
can exchange the max and the min and get a lower bound on p∗:

d∗ = max
λ≥0

min
u
L(u, λ) ≤ min

u
max
λ≥0

L(u,λ) = p∗.

The objective function of the maximization problem is now called the (Lagrange)
dual function.

Definition 1.6

(Lagrange) dual function The (Lagrange) dual function g : Rm → R is defined
as

g(λ) = min
u

L(u, λ)

= min
u

f0(u) + λ1f1(u) + . . . + λmfm(u). (1.10)

Furthermore g(λ) is concave, even if the fi(u) are not convex.

The concavity can easily be seen by considering first that for a given u, L(u, λ) is

2003/09/29 09:33

1.4 Semidefinite Programming (SDP) 11

an affine function of λ and hence is a concave function. Since g(λ) is the pointwise
minimum of such concave functions, it is concave.

Definition 1.7

Lagrange dual problem The Lagrange dual problem is defined as

d∗ = max
λ≥0

g(λ).

Since g(λ) is concave, this will always be a convex optimization problem, even if
the primal is not. By weak duality, we always have d∗ ≤ p∗, even for non-convex
problems. The value p∗ − d∗ is called the duality gap. For convex problems, we
usually (although not always) have strong duality at the optimum, i.e.,

d∗ = p∗,

which is also referred to as a zero duality gap. For convex problems, a sufficient
condition for zero duality gap is provided by Slater’s condition:

Lemma 1.8

Slater’s condition If the primal problem (1.7) is convex and is strictly feasible,
i.e., ∃ u0 : fi(u0) < 0, i = 1, . . . ,m, then

p∗ = d∗.

1.4.3 SDP Duality and Optimality Conditions

Consider for simplicity the case of an SDP with a single LMI constraint, and no
affine equalities:

p∗ = min
u

cT u subject to F (u) = F0 + u1F1 + . . . uqFq ¹ 0. (1.11)

The general case of multiple LMI constraints and affine equalities can be handled by
elimination of the latter and using block-diagonal matrices to represent the former
as a single LMI.

The classical Lagrange duality theory outlined in the previous section does not
directly apply here, since we are not dealing with finitely many constraints in
scalar form; as noted earlier, the LMI constraint involves an infinite number of such
constraints, of the form (1.3). One way to handle such constraints is to introduce a
Lagrangian of the form

L(u, Z) = cT u + trace(ZF (u)),

where the dual variable Z is now a symmetric matrix, of same size as F (u). We can
check that such a Lagrange function fulfills the same role assigned to the function
defined in Definition 1.4 for the case with scalar constraints. Indeed, if we define

2003/09/29 09:33

12 Kernel-based Integration of Genomic Data using Semidefinite Programming

h(u) = maxZº0 L(u, Z) then

h(u) = max
Zº0

L(u, Z) =

{
cT u if F (u) ¹ 0,

+∞ otherwise.
(1.12)

Thus, h(u) is a barrier for the primal SDP (1.11), that is, it coincides with the
objective of (1.11) on its feasible set, and is infinite otherwise. Notice that to the
LMI constraint we now associate a multiplier matrix, which will be constrained to
the positive semidefinite cone.

In the above, we made use of the fact that, for a given symmetric matrix F ,

Θ(F) := sup
Zº0

trace(ZF)

is +∞ if F has a positive eigenvalue, and zero if F is negative semidefinite. This
property is obvious for diagonal matrices, since in that case the variable Z can
be constrained to be diagonal without loss of generality. The general case follows
from the fact that if F has the eigenvalue decomposition F = UΛUT , where Λ
is a diagonal matrix containing the eigenvalues of F , and U is orthogonal, then
trace(ZF) = trace(Z ′Λ), where Z ′ = UT ZU spans the positive semidefinite cone
whenever Z does.

Using the above Lagrangian, one can cast the original problem (1.11) as an
unconstrained optimization problem:

p∗ = min
u

max
Zº0

L(u, Z).

By weak duality, we obtain a lower bound on p∗ by exchanging the min and max:

d∗ = max
Zº0

min
u
L(u, Z) ≤ min

u
max
Zº0

L(u, Z) = p∗.

The inner minimization problem is easily solved analytically, due to the special
structure of the SDP. We obtain a closed form for the (Lagrange) dual function:

g(Z) = min
u
L(u, Z) = min

u
cT u + trace(ZF0) +

q∑

i=1

ui trace(ZFi)

=

{
trace(ZF0) if ci = −trace(ZFi), i = 1, . . . , q

−∞ otherwise.

The dual problem can be explicitly stated as follows:

d∗ = max
Zº0

min
u
L(u, Z)

= max
Z

trace(ZF0) subject to Z º 0, ci = −trace(ZFi), i = 1, . . . , q. (1.13)

We observe that the above problem is an SDP, with a single LMI constraint and q

affine equalities in the matrix dual variable Z.
While weak duality always holds, strong duality may not, even for SDPs. Not

surprisingly, a Slater-type condition ensures strong duality. Precisely, if the primal

2003/09/29 09:33

1.5 Kernel Methods for Data Fusion 13

SDP (1.11) is strictly feasible, that is, there exist a u0 such that F (u0) ≺ 0, then
p∗ = d∗. If, in addition, the dual problem is also strictly feasible, meaning that
there exist Z Â 0 such that ci = trace(ZFi), i = 1, . . . , q, then both primal and
dual optimal values are attained by some optimal pair (u∗, Z∗). In that case, we
can characterize such optimal pairs as follows. In view of the equality constraints
of the dual problem, the duality gap can be expressed as

p∗ − d∗ = cT u∗ − trace(Z∗F0)

= −trace(Z∗F (u∗)).

A zero duality gap is equivalent to trace(Z∗F (u∗)) = 0, which in turn is equivalent
to Z∗F (u∗) = O, where O denotes the zero matrix, since the product of a positive
semidefinite and a negative semidefinite matrix has zero trace if and only if it is
zero.

To summarize, consider the SDP (1.11) and its Lagrange dual (1.13). If either
problem is strictly feasible, then they share the same optimal value. If both problems
are strictly feasible, then the optimal values of both problems are attained and
coincide. In this case, a primal-dual pair (u∗, Z∗) is optimal if and only if

F (u∗) ¹ 0,

Z∗ º 0,

ci = −trace(Z∗Fi), i = 1, . . . , q,

Z∗F (u∗) = O.

The above conditions represent the expression of the general Karush-Kuhn-Tucker
(KKT) conditions in the semidefinite programming setting. The first three sets of
conditions express that u∗ and Z∗ are feasible for their respective problems; the
last condition expresses a complementarity condition.

For a pair of strictly feasible primal-dual SDPs, solving the primal minimization
problem is equivalent to maximizing the dual problem and both can thus be
considered simultaneously. Algorithms indeed make use of this relationship and use
the duality gap as a stopping criterion. A general-purpose program such as SeDuMi
(Sturm, 1999) handles those problems efficiently. This code uses interior-point
methods for SDP (Nesterov and Nemirovsky, 1994); these methods have a worst-
case complexity of O(q2p2.5) for the general problem (1.11). In practice, problem
structure can be exploited for great computational savings: e.g., when F (u) ∈ Rp×p

consists of L diagonal blocks of size pi, i = 1, . . . , L, these methods have a worst-
case complexity of O(q2(

∑L
i=1 p2

i)p
0.5) (Vandenberghe and Boyd, 1996).

1.5 Kernel Methods for Data Fusion

Given multiple related data sets (e.g., gene expression, protein sequence, and
protein-protein interaction data), each kernel function produces, for the yeast

2003/09/29 09:33

14 Kernel-based Integration of Genomic Data using Semidefinite Programming

genome, a square matrix in which each entry encodes a particular notion of
similarity of one yeast protein to another. Implicitly, each matrix also defines an
embedding of the proteins in a feature space. Thus, the kernel representation casts
heterogeneous data—variable-length amino acid strings, real-valued gene expression
data, a graph of protein-protein interactions—into the common format of kernel
matrices.

The kernel formalism also allows these various matrices to be combined. Basic
algebraic operations such as addition, multiplication and exponentiation preserve
the key property of positive semidefiniteness, and thus allow a simple but powerful
algebra of kernels (Berg et al., 1984). For example, given two kernels K1 and K2,
inducing the embeddings Φ1(x) and Φ2(x), respectively, it is possible to define the
kernel K = K1 + K2, inducing the embedding Φ(x) = [Φ1(x),Φ2(x)]. Of even
greater interest, we can consider parameterized combinations of kernels. In this
chapter, given a set of kernels K = {K1,K2, . . . , Km}, we will form the linear
combination

K =
m∑

i=1

µiKi. (1.14)

As we have discussed, fitting an SVM to a single data source involves solving the
quadratic program (1.2) based on the kernel matrix and the labels. It is possible to
extend this optimization problem not only to find optimal discriminant boundaries
but also to find optimal values of the coefficients µi in (1.14) for problems involving
multiple kernels (Lanckriet et al., 2002). In the case of the 1-norm soft margin SVM,
we want to minimize the same cost function (1.1), now with respect to both the
discriminant boundary and the µi. Since the primal problem (1.1) is convex and
strictly feasible, strong duality holds for (1.1) and (1.2) according to Lemma 1.8:

ωS1(K) = wT
∗w∗ + C

n∑

i=1

ξi,∗ (1.15)

= max
α

2αT e−αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αT y = 0.

where e is a vector containing ones and w∗ and ξi,∗ the optimal values of the primal
variables w and ξi. Training an SVM for a given kernel K º 0 yields the minimal
value (1.15) of (1.1) which is obviously a function of the particular choice of K, as is
expressed explicitly in (1.15) as a dual problem. Let us now optimize this quantity
with respect to the kernel matrix K =

∑m
i=1 µiKi, i.e., let us try to find the weights

µ ∈ Rm for which the corresponding embedding shows minimal ωS1(K), keeping
the trace of K constant:

min
µ∈Rm,Kº0

ωS1(K) s.t. trace(K) = c, K =
m∑

i=1

µiKi, (1.16)

where c is a constant. Note that the constraint K º 0, emerges very naturally
because the optimal kernel matrix must indeed come from the cone of positive
semidefinite matrices. We first notice a fundamental property of the quantity

2003/09/29 09:33

1.5 Kernel Methods for Data Fusion 15

ωS1(K), a property that is crucial for the remainder of this discussion:

Proposition 1.9

The quantity

ωS1(K) = max
α

2αT e−αT diag(y)Kdiag(y)α : C ≥ α ≥ 0, αT y = 0,

is convex in K.

This is easily seen by considering first that 2αT e − αT diag(y)Kdiag(y))α is an
affine function of (the entries of) K, and hence is a convex function as well. Secondly,
we notice that ωS1(K) is the pointwise maximum of such convex functions and is
thus convex. This last statement is illustrated in a discrete case in figure 1.1. It shows
how the pointwise maximum of two functions is convex. This can be extended for
an infinite set of functions, e.g., indexed by α in this case.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

x

f(x) g(x)

Figure 1.1 Given two convex functions f(x) and g(x). Their pointwise maximum
max{f(x), g(x)} will also be convex, as can easily be seen from the convexity of the shaded
area (called the epigraph).

Problem (1.16) is now a convex optimization problem. The following theorem
shows that, for K =

∑m
i=1 µiKi, this problem can be cast as an SDP:

Theorem 1.10

Given a labelled sample Sn = {(x1, y1), . . . , (xn, yn)} with corresponding set of
labels y ∈ Rn and a set of kernel matrices {Ki}m

i=1, the kernel matrix K =∑m
i=1 µiKi that optimizes (1.16) can be found by solving the following convex

2003/09/29 09:33

16 Kernel-based Integration of Genomic Data using Semidefinite Programming

optimization problem which is a semidefinite program (SDP):

min
µ,t,λ,ν,δ

t (1.17)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑

i=1

µiKi º 0,

(
diag(y)(

∑m
i=1 µiKi)diag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0,

ν, δ ≥ 0.

Proof After substitution of ωS1(K) as defined in (1.15), (1.16) becomes:

min
µ∈Rm,Kº0

max
α

2αT e−αT diag(y)Kdiag(y)α

subject to C ≥ α ≥ 0, αT y = 0, trace(K) = c, K =
m∑

i=1

µiKi, (1.18)

with c a constant. Assume that K Â 0, hence diag(y)Kdiag(y) Â 0 (the following
can be extended to the general semidefinite case). We note that ωS1(K) is convex
in K (because of Proposition 1.9) and thus in µ, since K is a linear function of µ.
Given the convex constraints in (1.18), the optimization problem is thus certainly
convex in µ. We write this as:

min
µ∈Rm,Kº0,t

t : t ≥ max
α

2αT e−αT diag(y)Kdiag(y)α,

C ≥ α ≥ 0, αT y = 0, trace(K) = c, K =
m∑

i=1

µiKi. (1.19)

We will now express t ≥ maxα 2αT e−αT diag(y)Kdiag(y)α as an LMI using du-
ality. In particular, we express the constraint using the dual minimization problem.
This will allow us to drop the minimization and use the Schur complement lemma
to obtain an LMI. We explain this now in more detail.

Define the Lagrangian of the maximization problem (1.2) by

L(α, ν, λ, δ) = 2αT e−αT diag(y)Kdiag(y)α + 2νT α + 2λyT α + 2δT (Ce−α),

where λ ∈ R and ν, δ ∈ Rn. By duality, we have

ωS1(K) = max
α

min
ν≥0,δ≥0,λ

L(α, ν, λ, δ) = min
ν≥0,δ≥0,λ

max
α

L(α, ν, λ, δ),

where ν ≥ 0 ⇔ νi ≥ 0 for i = 1, . . . , n, similarly for δ. Since diag(y)Kdiag(y) Â 0,
at the optimum, we have

α = (diag(y)Kdiag(y))−1 (e + ν − δ + λy),

2003/09/29 09:33

1.5 Kernel Methods for Data Fusion 17

and can form the dual problem

ωS1(K) = min
ν, δ, λ

(e+ν−δ+λy)T (diag(y)Kdiag(y))−1 (e+ν−δ+λy)+2CδT e : ν ≥ 0, δ ≥ 0.

We obtain that for any t > 0, the constraint ωS1(K) ≤ t is true if and only if there
exist ν ≥ 0, δ > 0 and λ such that

(e + ν − δ + λy)T (diag(y)Kdiag(y))−1 (e + ν − δ + λy) + 2CδT e ≤ t,

or, equivalently (using the Schur complement lemma), such that
(

diag(y)Kdiag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0

holds. Taking this into account, (1.19) can be expressed as:

min
µ∈Rm,K,t,λ,ν,δ

t (1.20)

subject to trace(K) = c,

K =
m∑

i=1

µiKi º 0,

(
diag(y)Kdiag(y) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0,

ν ≥ 0,

δ ≥ 0,

which yields (1.17) after substituting K =
∑m

i=1 µiKi to eliminate K. Notice that
ν ≥ 0 ⇔ diag(ν) º 0, and thus an LMI; similarly for δ ≥ 0.

Notice that the optimization problem (1.17) is an SDP in the standard form
(1.4). This leads to a general method for learning the optimal combination of kernel
matrices as a semidefinite programming problem, which can be solved via efficient
interior-point algorithms (Vandenberghe and Boyd, 1996). Although efficient, these
algorithms will still have a worst-case complexity O(n4.5) in this particular case,
according to the complexity results mentioned in Section 1.4.3.

In this discussion, the Ki are positive semidefinite by construction; thus K º 0
is automatically satisfied if the weights µi are constrained to be non-negative.
We will now point out an additional advantage of the restriction µ ≥ 0: it will
allow us to cast the SDP (1.17) as a quadratically constrained quadratic program
(QCQP), which has beneficial computational effects by lowering the efficiency of the
computation to O(n3) in terms of the number of data points. Also, the constraint
can result in improved numerical stability—it prevents the algorithm from using
large weights with opposite sign that cancel. Finally, Lanckriet et al. (2002) shows
that the constraint also yields better estimates of the generalization performance
of these algorithms.

2003/09/29 09:33

18 Kernel-based Integration of Genomic Data using Semidefinite Programming

Solving the original learning problem (1.16) subject to the extra constraint µ ≥ 0
yields:

min
µ∈Rm,K

max
α : C≥α≥0,αT y=0

2αT e−αT diag(y)Kdiag(y)α

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiKi,

µ ≥ 0,

when ωS1(K) is expressed using (1.15). We can omit the second constraint, because
this is implied by the last two constraints, since Ki º 0. If we let trace(Ki) = ri,
where r ∈ Rm, the problem reduces to:

min
µ

max
α : C≥α≥0,αT y=0

2αT e−αT diag(y)

(
m∑

i=1

µiKi

)
diag(y)α

subject to µT r = c,

µ ≥ 0.

We can write this as:

min
µ : µ≥0,µT r=c

max
α : C≥α≥0,αT y=0

2αT e−αT diag(y)

(
m∑

i=1

µiKi

)
diag(y)α

= min
µ : µ≥0,µT r=c

max
α : C≥α≥0,αT y=0

2αT e−
m∑

i=1

µiα
T diag(y)Kidiag(y)α

= max
α : C≥α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αT e−
m∑

i=1

µiα
T diag(y)Kidiag(y)α,

The interchange of the order of the minimization and the maximization is justified
by standard results in convex optimization (see, e.g., Boyd and Vandenberghe, 2001)
since the objective is convex in µ (it is linear in µ) and concave in α, and because
the minimization problem is strictly feasible in µ and the maximization problem
strictly feasible in α. We thus obtain:

max
α : C≥α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αT e−
m∑

i=1

µiα
T diag(y)Kidiag(y)α

= max
α : C≥α≥0,αT y=0

[
2αT e− max

µ : µ≥0,µT r=c

(
m∑

i=1

µiα
T diag(y)Kidiag(y)α

)]

= max
α : C≥α≥0,αT y=0

[
2αT e−max

i

(
c

ri
αT diag(y)Kidiag(y)α

)]
.

2003/09/29 09:33

1.6 Two Biological Experiments 19

Finally, this can be reformulated as follows:

max
α,t

2αT e− ct (1.21)

subject to t ≥ 1
ri

αT diag(y)Kidiag(y)α, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0,

or, when the Ki are normalized ([Ki]jj = 1, j = 1, . . . , n, such that ri = n):

max
α,t

2αT e− ct (1.22)

subject to t ≥ 1
n

αT diag(y)Kidiag(y)α, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0.

This problem is a convex optimization problem, more precisely a quadratically
constrained quadratic program (QCQP) (Boyd and Vandenberghe, 2001). Thus,
the SDP (1.17) can be cast as a QCQP, which improves the efficiency of the
computation to O(n3) in terms of the number of data points. The optimal weights
µi, i = 1, . . . ,m, can be recovered from the primal-dual solution found by standard
software such as SeDuMi (Sturm, 1999).

Thus, by solving a QCQP, we are able to find an adaptive combination of
kernel matrices—and thus an adaptive combination of heterogeneous information
sources—that solves our classification problem. The output of our procedure is a
set of weights µi and a discriminant function based on these weights. We obtain
a classification decision that merges information encoded in the various kernel
matrices, and we obtain weights µi that reflect the relative importance of these
information sources.

1.6 Two Biological Experiments

In this section, we illustrate the kernel-based approach for fusing heterogeneous
genomic data using semidefinite programming for 2 biologically relevant problems:
membrane protein prediction and protein function prediction in yeast. More details
can be found in Lanckriet et al. (2003), for membrane protein recognition, and in
Lanckriet et al. (2004), for the protein function classification.

1.6.1 Membrane Protein Classification

Membrane proteins are proteins that anchor in one of various membranes in the cell.
Many membrane proteins serve important communicative functions. Generally, each
membrane protein passes through the membrane several times. The transmembrane

2003/09/29 09:33

20 Kernel-based Integration of Genomic Data using Semidefinite Programming

Table 1.1 Kernel functions. The table lists the seven kernels used to compare
proteins, the data on which they are defined, and the method for computing
similarities. The final kernel, KRND, is included as a control. All kernels matrices,
along with the data from which they were generated, are available at noble.gs.

washington.edu/sdp-svm.

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman

KB protein sequences BLAST

KHMM protein sequences Pfam HMM

KFFT hydropathy profile FFT

KLI protein interactions linear kernel

KD protein interactions diffusion kernel

KE gene expression radial basis kernel

KRND random numbers radial basis kernel

regions of the amino acid sequence are typically hydrophobic, whereas the non-
membrane portions are hydrophilic. This specific hydrophobicity profile of the
protein allows it to anchor itself in the cell membrane.

Because the hydrophobicity profile of a membrane protein is critical to its
function, this profile is better conserved in evolution than the specific amino acid
sequence. Therefore, classical methods for determining whether a protein spans a
membrane (Chen and Rost, 2002) depend upon a hydropathy profile, which plots the
hydrophobicity of the amino acids along the protein (Engleman et al., 1986; Black
and Mould, 1991; Hopp and Woods, 1981). In this subsection, we build on these
classical methods by developing a kernel function that is based on the low-frequency
alternation of hydrophobic and hydrophilic regions in membrane proteins. However,
we also demonstrate that the hydropathy profile provides only partial evidence for
transmembrane regions. Additional information is gleaned from sequence homology
and from protein-protein interactions.

Note that, in general, membrane protein prediction consists of predicting the lo-
cations of multiple transmembrane regions within a single protein. In this example,
however, for the purposes of demonstrating the SDP method, we focus on the binary
prediction task of differentiating between membrane and non-membrane proteins.

1.6.1.1 Kernels for membrane protein prediction

For the task of membrane protein classification we experiment with seven kernel
matrices derived from three different types of data: four from the primary protein
sequence, two from protein-protein interaction data, and one from mRNA expres-
sion data. These are summarized in Table 1.1.

2003/09/29 09:33

1.6 Two Biological Experiments 21

1.6.1.2 Protein sequence: Smith-Waterman, BLAST and Pfam HMM

kernels

A homolog of a membrane protein is likely also to be located in the membrane.
Therefore, we define three kernel matrices based upon standard homology detection
methods. The first two sequence-based kernel matrices (KSW and KB) are gener-
ated using the BLAST (Altschul et al., 1990) and Smith-Waterman (SW) (Smith
and Waterman, 1981) pairwise sequence comparison algorithms, as described pre-
viously (Liao and Noble, 2002). Because matrices of BLAST or Smith-Waterman
scores are not necessarily positive semidefinite, we represent each protein as a vec-
tor of scores (BLAST and SW log E-values, respectively) against all other proteins.
Defining the similarity between proteins as the inner product between the score
vectors (the so-called empirical kernel map, Tsuda, 1999) leads to a valid kernel
matrix, one for the BLAST score and one for the SW score. Note that including in
the comparison set proteins with unknown subcellular locations allows the kernel to
exploit this unlabelled data. The third kernel matrix (KHMM) is a generalization of
the previous pairwise comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden Markov models in
the Pfam database (Sonnhammer et al., 1997). These similarity measures are not
specific to the membrane protein classification task.

1.6.1.3 Protein sequence: FFT kernel

In contrast, the fourth sequence-based kernel matrix (KFFT) directly incorporates
information about hydrophobicity patterns, which are known to be useful in iden-
tifying membrane proteins. The kernel uses hydropathy profiles generated from
the Kyte-Doolittle index (Kyte and Doolittle, 1982). This kernel compares the fre-
quency content of the hydropathy profiles of the two proteins. After pre-filtering the
hydropathy profiles, their Fourier transforms (describing the frequency content) are
computed using an FFT algorithm. The frequency contents of different profiles are
compared by applying a Gaussian kernel function, k(x1,x2) = exp(−||x1−x2||2/2σ)
with width σ = 10, to the corresponding vectors of FFT values. This kernel detects
periodicities in the hydropathy profile, a feature that is relevant to the identification
of membrane proteins and complementary to the previous, homology-based kernels.

1.6.1.4 Protein interactions: linear and diffusion kernels

We expect information about protein-protein interactions to be informative in this
context for two reasons. First, hydrophobic molecules or regions of molecules tend
to interact with each other. Second, transmembrane proteins are often involved in
signaling pathways, and therefore different membrane proteins are likely to interact
with a similar class of molecules upstream and downstream in these pathways (e.g.,
hormones upstream or kinases downstream). The two protein interaction kernels
are generated using medium- and high-confidence interactions from a database of

2003/09/29 09:33

22 Kernel-based Integration of Genomic Data using Semidefinite Programming

known interactions (von Mering et al., 2002). These interactions can be represented
as an interaction matrix, in which rows and columns correspond to proteins, and
binary entries indicate whether the two proteins interact.

The first interaction kernel matrix (KLI) is comprised of linear interactions, i.e.,
inner products of rows and columns from the centered, binary interaction matrix.
The more similar the interaction pattern (corresponding to a row or column from
the interaction matrix) is for a pair of proteins, the larger the inner product will
be.

An alternative way to represent the same interaction data is to consider the
proteins as nodes in a large graph. In this graph, two proteins are linked when they
interact and otherwise not. Kondor and Lafferty (2002) propose a general method
for establishing similarities between the nodes of a graph, based on a random walk
on the graph. This method efficiently accounts for all possible paths connecting
two nodes, and for the lengths of those paths. Nodes that are connected by shorter
paths or by many paths are considered more similar. The resulting diffusion kernel
generates the second interaction kernel matrix (KD).

An appealing characteristic of the diffusion kernel is its ability, like the empirical
kernel map, to exploit unlabelled data. In order to compute the diffusion kernel, a
graph is constructed using all known protein-protein interactions, including inter-
actions involving proteins whose subcellular locations are unknown. Therefore, the
diffusion process includes interactions involving unlabelled proteins, even though
the kernel matrix only contains entries for labelled proteins. This allows two la-
belled proteins to be considered close to one another if they both interact with an
unlabelled protein.

1.6.1.5 Gene expression: radial basis kernel

Finally, we also include a kernel constructed entirely from microarray gene expres-
sion measurements. A collection of 441 distinct experiments was downloaded from
the Stanford Microarray Database (genome-www.stanford.edu/microarray).
This data provides us with a 441-element expression vector characterizing each
gene. A Gaussian kernel matrix (KE) is computed from these vectors by applying
a Gaussian kernel function with width σ = 100 to each pair of 441-element vectors,
characterizing a pair of genes. Note that we do not expect that gene expression
will be particularly useful for the membrane classification task. We do not need
to make this decision a priori, however; as explained in the following section, our
method is able to provide an a posteriori measure of how useful a data source is
relative to the other sources of data. We thus include the expression kernel in our
experiments to test this aspect of the method.

1.6.1.6 Experimental design

In order to test our kernel-based approach in the setting of membrane protein
classification, we use as a gold standard the annotations provided by the Munich

2003/09/29 09:33

1.6 Two Biological Experiments 23

Information Center for Protein Sequences Comprehensive Yeast Genome Database
(CYGD) (Mewes et al., 2000). The CYGD assigns subcellular locations to 2318
yeast proteins, of which 497 belong to various membrane protein classes. The
remaining approximately 4000 yeast proteins have uncertain location and are
therefore not used in these experiments.

The primary input to the classification algorithm is the collection of kernel
matrices from Table 1.1. Using the SDP techniques described above, we find an
optimal combination of the seven kernel matrices, and the resulting matrix is used
to train an SVM classifier.

For comparison with the SDP/SVM learning algorithm, we consider several
classical biological methods that are commonly used to determine whether a Kyte-
Doolittle plot corresponds to a membrane protein, as well as a state-of-the-art
technique using hidden Markov models (HMMs) to predict transmembrane helices
in proteins (Krogh et al., 2001; Chen and Rost, 2002). The first method relies on
the observation that the average hydrophobicity of membrane proteins tends to be
higher than that of non-membrane proteins, because the transmembrane regions are
more hydrophobic. We therefore define f1 as the average hydrophobicity, normalized
by the length of the protein. We will compare the classification performance of our
statistical learning algorithm with this metric.

Clearly, however, f1 is too simplistic. For example, protein regions that are not
transmembrane only induce noise in f1. Therefore, an alternative metric filters
the hydrophobicity plot with a low-pass filter and then computes the number, the
height and the width of those peaks above a certain threshold (Chen and Rost,
2002). The filter is intended to smooth out periodic effects. We implement two such
filters, choosing values for the filter order and the threshold based on Chen and
Rost (2002). In particular, we define f2 as the area under the 7th-order low-pass
filtered Kyte-Doolittle plot and above a threshold value 2, normalized by the length
of the protein. Similarly, f3 is the corresponding area using a 20th-order filter and
a threshold of 1.6.

Finally, the Transmembrane HMM (TMHMM) web server (www.cbs.dtu.dk/
services/TMHMM) is used to make predictions for each protein. In Krogh et al.
(2001), transmembrane proteins are identified by TMHMM using three different
metrics: the expected number of amino acids in transmembrane helices, the number
of transmembrane helices predicted by the N -best algorithm, and the expected
number of transmembrane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists of proteins, ranked by
the number of predicted transmembrane helices (TPH) and by the expected number
of residues in transmembrane helices (TENR).

Each algorithm’s performance is measured by splitting the data into a training
and test set in a ratio of 80/20. We report the receiver operating characteristic
(ROC) score, which is the area under a curve that plots true positive rate as a
function of false positive rate for differing classification thresholds (Hanley and
McNeil, 1982; Gribskov and Robinson, 1996). The ROC score measures the overall
quality of the ranking induced by the classifier, rather than the quality of a single

2003/09/29 09:33

24 Kernel-based Integration of Genomic Data using Semidefinite Programming

B SW HMM FFT LI D E all f1 f2 f3 PH ENR
0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
O

C

0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Figure 1.2 Combining data sets yields better classification performance. The
height of each bar is proportional to the ROC score of the given membrane protein
classification method. The bars labelled B to E and all correspond to SDP/SVM
methods, the bars labelled f are hydropathy profile metrics, and the bars labelled
PH and ENR refer to the TMHMM methods as defined in the text. Error bars
indicate standard error across 30 random train/test splits. The heights of the grey
level bars below each plot indicate the relative weight of the different kernel matrices
in the optimal linear combination.

point in that ranking. An ROC score of 0.5 corresponds to random guessing, and an
ROC score of 1.0 implies that the algorithm succeeded in putting all of the positive
examples before all of the negatives. Each experiment is repeated 30 times with
different random splits in order to estimate the variance of the performance values.

1.6.1.7 Results

We performed computational experiments which study the performance of the
SDP/SVM approach as a function of the number of data sources, compare the
performance of the method to classical biological methods and state-of-the-art
techniques for membrane protein classification, and study the robustness of the
method to the presence of noise.

The results from the first three experiments are summarized in Figure 1.2. The
plot illustrates that SDP/SVM learns significantly better from the heterogeneous

2003/09/29 09:33

1.6 Two Biological Experiments 25

data than from any single data type. The mean ROC score using all seven kernel
matrices (0.9174 ± 0.0025) is significantly higher than the best ROC score using
only one matrix (0.8487 ± 0.0039 using the diffusion kernel). This improvement
corresponds to a change in test set accuracy of 7.3%, from 81.3% to 88.6%.

As expected, the sequence-based kernels yield good individual performance. This
is evident from the ROC scores. Furthermore, when all seven matrices are used at
once, the SDP assigns relatively large weights to the sequence-based kernels. These
weights are as follows: µB = 1.66, µSW = 1.83, µHMM = 0.93, µFFT = 0.39,
µLI = 0.01, µD = 1.37 and µE = 0.82 (note that for ease of interpretation, we scale
the weights such that their sum is equal to the number m of kernel matrices).
Thus, two of the three kernel matrices that receive weights larger than 1 are
derived from the amino acid sequence. The Smith-Waterman kernel yields better
results than the BLAST kernel, reflecting the fact that BLAST is a heuristic search
procedure, whereas the Smith-Waterman algorithm guarantees finding the optimal
local alignment of two sequences.

The results also show that the interaction-based diffusion kernel is more informa-
tive than the expression kernel. Not only has the diffusion kernel an individual ROC
score which is significantly higher than the expression kernel, the SDP also assigns
a weight of 1.37 to the diffusion kernel, whereas the expression kernel receives a
weight of 0.82. Accordingly, removing the diffusion kernel reduces the ROC score
from 0.9174 to 0.8984, whereas removing the expression kernel has a smaller effect,
leading to a ROC score of 0.9033. Further description of the results obtained when
various subsets of kernels are used is provided in Lanckriet et al. (2003).

Figure 1.2 also compares the membrane protein classification performance of
the SDP/SVM method with that of previously described techniques. The results
confirm that using learning in this context dramatically improves the results relative
to the simple hydropathy profile approach. Also, the SDP/SVM improves upon the
performance of the TMHMM approach, even when the SVM algorithm uses only
the sequence data KSW or KHMM (ROC of 0.8096 ± 0.0033 or 0.8382 ± 0.0038
versus 0.8018, respectively).

While the SDP/SVM algorithm is a discriminative method that attempts to find
a decision boundary that separates positive and negative instances of membrane
proteins, the TMHMM is a generative method that simply attempts to model
the membrane proteins. As an illustration of the difference, it is known that the
TMHMM tends to yield false positives for sequences containing signal peptides—
hydrophobic sequences in the N-terminal regions of proteins (Chen and Rost,
2002). The SDP/SVM approach tends to avoid these false positives, because signal
peptides appear among the negative instances in the training set. Indeed, as shown
in Lanckriet et al. (2003), signal peptides tend to be highly ranked by the TMHMM,
and are more uniformly spread within the SDP/SVM rankings.

Finally, in order to test the robustness of our approach, a second experiment
was performed in which a randomly generated kernel matrix KRND was included
among the kernel matrices used as input to our algorithm. This kernel matrix was
generated by sampling 100-element vectors for each protein, where each component

2003/09/29 09:33

26 Kernel-based Integration of Genomic Data using Semidefinite Programming

Table 1.2 Functional categories. The table lists the 13 CYGD functional classi-
fications used in these experiments. The class listed as “others” is a combination of
four smaller classes: (1) cellular communication/signal transduction mechanism, (2)
protein activity regulation, (3) protein with binding function or cofactor require-
ment (structural or catalytic) and (4) transposable elements, viral and plasmid
proteins.

Category Size Category Size

1 metabolism 1048 8 cell rescue, defense & virulence 264

2 energy 242 9 interaction w/ cell. envt. 193

3 cell cycle & DNA processing 600 10 cell fate 411

4 transcription 753 11 control of cell. organization 192

5 protein synthesis 335 12 transport facilitation 306

6 protein fate 578 13 others 81

7 cellular transp. & transp. mech. 479

of each vector was sampled independently from a standard normal distribution,
and then computing inner products of the 100-element vectors to form KRND.
A control classifier trained using only the random kernel yields an ROC score of
0.5, indicating that KRND is indeed uninformative for the classification problem at
hand. More importantly, when a classifier is trained using all seven real kernels plus
KRND, SDP assigns the random kernel a weight that is close to zero. Thus, the
ROC score derived from seven matrices does not change when the random matrix
is added, indicating that the method is robust to the presence of noisy, irrelevant
data.

1.6.2 Yeast Function Prediction

As a second test for our kernel-based approach, we follow the experimental paradigm
of Deng et al. (2003a). The task is predicting functional classifications associated
with yeast proteins, and we use as a gold standard the functional catalogue
provided by the MIPS Comprehensive Yeast Genome Database (CYGD—mips.

gsf.de/proj/yeast). The top-level categories in the functional hierarchy produce
13 classes (see Table 1.2). These 13 classes contain 3588 proteins; the remaining
yeast proteins have uncertain function and are therefore not used in evaluating the
classifier. Because a given protein can belong to several functional classes, we cast
the prediction problem as 13 binary classification tasks, one for each functional
class.

The primary input to the classification algorithm is a collection of kernel matrices
representing different types of data. In order to compare the SDP/SVM approach
to the MRF method of Deng et al., we perform two variants of the experiment:
one in which the five kernels are restricted to contain precisely the same binary
information as used by the MRF method, and a second experiment in which two

2003/09/29 09:33

1.6 Two Biological Experiments 27

of the kernels use richer representations and a sixth kernel is added.

1.6.2.1 Kernels for protein function prediction

For the first kernel, the domain structure of each protein is summarized using
the mapping provided by SwissProt v7.5 (us.expasy.org/sprot) from protein
sequences to Pfam domains (pfam.wustl.edu). Each protein is characterized by a
4950-bit vector, in which each bit represents the presence or absence of one Pfam
domain. The kernel function KPfam is simply the inner product applied to these
vectors. This bit vector representation was used by the MRF method. In the second
experiment, the domain representation is enriched by adding additional domains
(Pfam 9.0 contains 5724 domains) and by replacing the binary scoring with log
E-values derived by comparing the HMMs with a given protein using the HMMER
software toolkit (hmmer.wustl.edu).

Three kernels are derived from CYGD information regarding three different types
of protein interactions: protein-protein interactions, genetic interactions, and co-
participation in a protein complex, as determined by tandem affinity purification
(TAP). All three data sets can be represented as graphs, with proteins as nodes
and interactions as edges. As explained before, each interaction graph allows to
establish similarities among proteins through the construction of a corresponding
diffusion kernel. This generates three interaction kernel matrices, KGen, KPhys and
KTAP . Because direct physical interaction is not necessarily guaranteed when two
proteins participate in a complex, a smaller diffusion constant — this parameter is
required to construct a diffusion kernel (see Kondor and Lafferty, 2002) — is used
to construct KTAP , i.e., τ = 1 instead of τ = 5 for the others.

The fifth kernel is generated using 77 cell cycle gene expression measurements
per gene (Spellman et al., 1998). Two genes with similar expression profiles are
likely to have similar functions; accordingly, Deng et al. convert the expression
matrix to a square binary matrix in which a 1 indicates that the corresponding
pair of expression profiles exhibits a Pearson correlation greater than 0.8. We use
this matrix to form a diffusion kernel KExp. In the second experiment, a Gaussian
kernel is defined directly on the expression profiles: for expression profiles x1 and
x2, the kernel is k(x1,x2) = exp(−||x1 − x2||2/2σ) with width σ = 0.5.

In the second experiment, we construct one additional kernel matrix by applying
the Smith-Waterman pairwise sequence comparison algorithm (Smith and Water-
man, 1981) to the yeast protein sequences. Each protein is represented as a vector
of Smith-Waterman log E-values, computed with respect to all 6355 yeast genes.
The kernel matrix KSW is computed using an inner product applied to pairs of
these vectors. This matrix is complementary to the Pfam domain matrix, captur-
ing sequence similarities among yeast genes, rather than similarities with respect
to the Pfam database.

2003/09/29 09:33

28 Kernel-based Integration of Genomic Data using Semidefinite Programming

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Function Class

R
O

C

Figure 1.3 Classification performance for the 13 functional classes. The height
of each bar is proportional to the ROC score. The standard deviation across the
15 experiments is usually 0.01 or smaller, so most of the depicted differences are
significant. Black bars correspond to the MRF method of Deng et al.; grey bars
correspond to the SDP/SVM method using five kernels computed on binary data,
and white bars correspond to the SDP/SVM using the enriched Pfam kernel and
replacing the expression kernel with the SW kernel.

1.6.2.2 Results

Each algorithm’s performance is measured by performing 5-fold cross-validation
three times. For a given split, we again evaluate each classifier by reporting the
receiver operating characteristic (ROC) score on the test set. For each classification,
we measure 15 ROC scores (three 5-fold splits), which allows us to estimate the
variance of the score.

The experimental results are summarized in Figure 1.3. The figure shows that, for
each of the 13 classifications, the ROC score of the SDP/SVM method is better than
that of the MRF method. Overall, the mean ROC improves from 0.715 to 0.854.
The improvement is consistent and statistically significant across all 13 classes. An
additional improvement, though not as large, is gained by replacing the expression
and Pfam kernels with their enriched versions. The most improvement is offered
by using the enriched Pfam kernel and replacing the expression kernel with the

2003/09/29 09:33

1.7 Discussion 29

Table 1.3 Kernel weights and ROC scores for the transport facilitation class.

The table shows, for both experiments, the mean weight associated with each kernel,
as well as the ROC score resulting from learning the classification using only that
kernel. The final row lists the ROC score using all kernels.

Kernel Binary data Enriched kernels

Weight ROC Weight ROC

KPfam 2.21 .9331 1.58 .9461

KGen 0.18 .6093 0.21 .6093

KPhys 0.94 .6655 1.01 .6655

KTAP 0.74 .6499 0.49 .6499

KExp 0.93 .5457 — .7126

KSW — — 1.72 .9180

all — .9674 — .9733

Smith-Waterman kernel. The resulting mean ROC is 0.870. Again, the improvement
occurs in every class, although some class-specific differences are not statistically
significant.

Table 1.3 provides detailed results for a single functional classification, the trans-
port facilitation class. The weight assigned to each kernel indicates the impor-
tance that the SDP/SVM procedure assigns to that kernel. The Pfam and Smith-
Waterman kernels yield the largest weights, as well as the largest individual ROC
scores. Note that the combination of kernels performs significantly better than any
single kernel. Results for the other twelve classifications are similar.

1.7 Discussion

We have described a general method for combining heterogeneous genome-wide
data sets in the setting of kernel-based statistical learning algorithms, and we
have demonstrated an application of this method to the problems of classifying
yeast membrane proteins and protein function prediction in yeast. The resulting
SDP/SVM algorithm yields significant improvement relative to an SVM trained
from any single data type, relative to both state-of-the-art and classical biologi-
cal methods for membrane protein prediction as well as relative to a previously
proposed graphical model approach for fusing heterogeneous genomic data. More,
the performance of the algorithm improves consistently in our experiments as ad-
ditional genome-wide data sets are added to the kernel representation, if the added
data contain complementary information.

Kernel-based statistical learning methods have a number of general virtues as
tools for biological data analysis. First, the kernel framework accommodates not
only the vectorial and matrix data that are familiar in classical statistical analysis,
but also more exotic data types such as strings, trees and graphs. The ability

2003/09/29 09:33

30 Kernel-based Integration of Genomic Data using Semidefinite Programming

to handle such data is clearly essential in the biological domain. Second, kernels
provide significant opportunities for the incorporation of more specific biological
knowledge, as we have seen with the FFT kernel and the Pfam kernel, and
unlabelled data, as in the diffusion and Smith-Waterman kernels. Third, the growing
suite of kernel-based data analysis algorithms require only that data be reduced to
a kernel matrix; this creates opportunities for standardization. Finally, as we have
shown here, the reduction of heterogeneous data types to the common format of
kernel matrices allows the development of general tools for combining multiple
data types. Kernel matrices are required only to respect the constraint of positive
semidefiniteness, and thus the powerful technique of semidefinite programming can
be exploited to derive general procedures for combining data of heterogeneous
format and origin.

We thus envision the development of general libraries of kernel matrices for
biological data, such as those that we have provided at noble.gs.washington.

edu/sdp-svm, that summarize the statistically-relevant features of primary data,
encapsulate biological knowledge, and serve as inputs to a wide variety of subsequent
data analyses. Indeed, given the appropriate kernel matrices, the methods that
we have described here are applicable to problems such as the prediction of
protein metabolic, regulatory and other functional classes, the prediction of protein
subcellular locations, and the prediction of protein-protein interactions.

2003/09/29 09:33

References

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter.
Essential cell biology: an introduction to the molecular biology of the cell. Garland
Science Publishing, 1998.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

C. Berg, C. J. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:
Theory of Positive Definite and Related Functions. Springer, New York, NY,
1984.

S. D. Black and D. R. Mould. Development of hydrophobicity parameters to analyze
proteins which bear post- or cotranslational modifications. Anal. Biochem., 193:
72–82, 1991.

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Computational Learing Theory, pages 144–152, 1992.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, Philadelphia, PA, 1994. ISBN 0-89871-334-X.

S. Boyd and L. Vandenberghe. Convex optimization. Course notes for EE364, Stan-
ford University. Available at http://www.stanford.edu/class/ee364, August
2001.

M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. S. Furey,
Jr. M. Ares, and D. Haussler. Knowledge-based analysis of microarray gene
expression data using support vector machines. PNAS, 97(1):262–267, 2000.

C. P. Chen and B. Rost. State-of-the-art in membrane protein prediction. Applied
Bioinformatics, 1(1):21–35, 2002.

M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional
prediction of proteins. In RECOMB, pages 95–103, 2003a.

M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein-protein
interactions and protein function prediction. In PSB, pages 140–151, 2003b.

A. Drawid and M. Gerstein. A Bayesian system integrating expression data with
sequence patterns for localizing proteins: comprehensive application to the yeast
genome. J. Mol. Biol., 301:1059–1075, 2000.

D. M. Engleman, T. A. Steitz, and A. Goldman. Identifying nonpolar transbilayer
helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys.

2003/09/29 09:33

32 References

Biophys. Chem., 15:321–353, 1986.

T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haus-
sler. Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics, 16(10):906–914, 2000.

H. Ge, Z. Liu, G. Church, and M. Vidal. Correlation between transcriptome and
interactome mapping data from Saccharomyces cerevisiae. Nature Genetics, 29:
482–486, 2001.

M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Computers and Chemistry, 20(1):25–33,
1996.

A. Grigoriev. A relationship between gene expression and protein interactions on
the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces
cerevisiae. Nucleic Acids Res., 29:3513–3519, 2001.

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143:29–36, 1982.

I. Holmes and W. J. Bruno. Finding regulatory elements using joint likelihoods for
sequence and expression profile data. In ISMB, pages 202–210, 2000.

T. P. Hopp and K. R. Woods. Prediction of protein antigenic determinants from
amino acid sequences. Proc. Natl. Acad. Sci. USA, 78:3824–3828, 1981.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to
detect remote protein homologies. In ISMB, pages 149–158, Menlo Park, CA,
1999. AAAI Press.

R. Jansen, N. Lan, J. Qian, and M. Gerstein. Integration of genomic datasets
to predict protein complexes in yeast. Journal of Structural and Functional
Genomics, 2:71–81, 2002.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input
spaces. In C. Sammut and A. Hoffmann, editors, Proceedings of the International
Conference on Machine Learning. Morgan Kaufmann, 2002.

A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer. Predicting
transmembrane protein topology with a hidden markov model: Application to
complete genomes. Journal of Molecular Biology, 305(3):567–580, 2001.

J. Kyte and R. F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157:105–132, 1982.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble.
A framework for genomic data fusion and its application to membrane protein
prediction. Technical Report 03-1273, University of California, Berkeley, Division
of Computer Science, 2003.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semi-definite programming. In C. Sammut
and A. Hoffmann, editors, Proceedings of the 19th International Conference on
Machine Learning. Morgan Kaufmann, 2002.

2003/09/29 09:33

References 33

G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-
based data fusion and its application to protein function prediction in yeast. In
PSB, 2004.

L. Liao and W. S. Noble. Combining pairwise sequence similarity and support
vector machines for remote protein homology detection. In RECOMB, pages
225–232, 2002.

E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisenberg.
A combined algorithm for genome-wide prediction of protein function. Nature,
402(6757):83–86, 1999.

H. W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke,
G. Mannhaupt, F. Pfeiffer, C Schüller, S. Stocker, and B. Weil. MIPS: a database
for genomes and protein sequences. Nucleic Acids Res., 28(1):37–40, 2000.

R. Mrowka, W. Lieberneister, and D. Holste. Does mapping reveal correlation
between gene expression and protein-protein interaction? Nature Genetics, 33:
15–16, 2003.

Akihiro Nakaya, Susumu Goto, and Minoru Kanehisa. Extraction of correlated gene
clusters by multiple graph comparison. In H. Matsuda, S. Miyano, T. Takagi, and
L. Wong, editors, Genome Informatics 2001, pages 44–53. Universal Academy
Press, 2001.

Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex
programming: Theory and applications. SIAM, Philadelphia, PA, 1994.

P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classification
from heterogeneous data. In RECOMB, pages 242–248, 2001.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

E. Sonnhammer, S. Eddy, and R. Durbin. Pfam: a comprehensive database of
protein domain families based on seed alignments. Proteins, 28(3):405–420, 1997.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of
cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol Biol Cell, 9:3273–3297, 1998.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999.
Special issue on Interior Point Methods (CD supplement with software).

Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant
biclusters in gene expression data. Bioinformatics, 18:S136–S144, 2002.

K. Tsuda. Support vector classification with asymmetric kernel function. In
M. Verleysen, editor, Proceedings ESANN, pages 183–188, 1999.

2003/09/29 09:33

34 References

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):
49–95, 1996.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Olivier, S. Fields, and P. Bork.
Comparative assessment of large-scale data sets of protein-protein interactions.
Nature, 417:399–403, 2002.

A. Zien, G. Rätch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engi-
neering support vector machine kernels that recognize translation initiation sites.
Bioinformatics, 16(9):799–807, 2000.

