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ABSTRACT

We propose the multivariate autoregressive model for con-
tent based music auto-tagging. At the song level our ap-
proach leverages the multivariate autoregressive mixture
(ARM) model, a generative time-series model for audio,
which assumes each feature vector in an audio fragment is
a linear function of previous feature vectors. To tackle tag-
model estimation, we propose an efficient hierarchical EM
algorithm for ARMs (HEM-ARM), which summarizes the
acoustic information common to the ARMs modeling the
individual songs associated with a tag. We compare the
ARM model with the recently proposed dynamic texture
mixture (DTM) model. We hence investigate the relative
merits of different modeling choices for music time-series:
i) the flexibility of selecting higher memory order in ARM,
ii) the capability of DTM to learn specific frequency ba-
sis for each particular tag and iii) the effect of the hidden
layer of the DT versus the time efficiency of learning and
inference with fully observable AR components. Finally,
we experiment with a support vector machine (SVM) ap-
proach that classifies songs based on a kernel calculated on
the frequency responses of the corresponding song ARMs.
We show that the proposed approach outperforms SVMs
trained on a different kernel function, based on a compet-
ing generative model.

1. INTRODUCTION

Browsing and discovery of new music can largely benefit
from semantic search engines for music, which represent
songs within a vocabulary of semantic tags, i.e., words or
short phrases describing songs’ attributes. By just typing
the desired tags as in a standard text search engines (e.g.,
Bing or Google), users can find the music they desire.
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Historically, attempts to map songs onto a semantic vo-
cabulary have initially relied on available metadata (e.g.
artist names, genre annotation, critical reviews), or man-
ual labeling from expert human annotators and social net-
works. More recently, distributed human computation gam-
es, such as TagATune [15] and HerdIt [2], have attempted
to scale up manual labeling to larger collections by re-
cruiting non-expert users through engaging or rewarding
games. However, these efforts have so far covered only
a small portion of the songs available in modern music
collections. 1 This motivates the development of content-
based auto-tagging systems, i.e., intelligent algorithms that,
by analyzing and understanding the acoustic content of
songs, can automatically index them with semantic tags.

1.1 Related work

A large number of content-based auto-taggers are trained
on a database of songs annotated with respect to a seman-
tic vocabulary following a common scheme. First, a time
series of low-level spectral features (e.g., Mel Frequency
Cepstral Coefficients (MFCCs)) is extracted from each song
in the database. Then, for each tag, a representative statis-
tical model is fine tuned to capture the most predictive pat-
terns common to the songs annotated with that tag. Once
a new song is available, the auto-tagger uses the learned
tag-models to process its low-level features and produces a
vector of tag-affinities. The tag-affinities are then mapped
onto a semantic multinomial (SMN), which represents the
song within the semantic vocabulary.

A variety of auto-taggers, based on either generative
models [13, 19, 23, 24] or discriminative models [4, 9, 11,
16, 21, 26], rely on a Bag-of-Features (BoF) representa-
tion of the spectral content of songs, which ignores tem-
poral dynamics by treating all feature vectors as indepen-
dent. While augmenting the spectral features with their
first and second instantaneous derivatives has represented a
common choice to enrich the BoF representation with tem-
poral information (e.g. [3, 23]), more principled solutions
have been implemented in recently proposed auto-taggers.
The dynamic texture mixture (DTM) treats short fragments
of audio as the output of a linear dynamical system [7].
The multi-scale learning algorithm in [12] leverages sev-
eral pooling functions for summarization of the features
over time. The Bag-of-Systems (BoS) approach represents

1 Pandora annotated catalog and TagATune labeled clips represent less
than 5% and 0.15% of the iTunes’ collection, respectively.



songs with a codebook of time-series models [10]. The
multivariate autoregressive (AR) model was used in [17]
in a semi-parametric approach for genre classification of
short musical snippets. In [20] various methods for tem-
poral integration, including the AR model, were examined
for musical instrument classification.

1.2 Original contribution

In this paper we introduce the autoregressive mixture (ARM)
model [1] for automatic music annotation and retrieval. We
first model each song as an ARM, estimated from a collec-
tion of audio-fragments extracted from the song. Note that
this is different from estimating single AR models from
individual audio clips as done in [17], since each mixture
component of a song-level ARM models the music content
of several (perceptually similar) audio fragments.

In order to model tag-level distributions as ARMs, we
propose a novel efficient hierarchical expectation maxi-
mization algorithm for ARMs (HEM-ARM). Starting from
all the song-ARMs that are relevant for a specific tag, the
proposed algorithm summarizes the common music con-
tent by clustering similar AR components together, and
learning a tag-ARM model with fewer components. We
compare our HEM-ARM with previous auto-taggers that
used GMMs [23] and DTMs [7], to model tag-level dis-
tribution, in tandem with an efficient HEM algorithm for
learning. In particular, we obtain that HEM-DTM gener-
ally performs better than HEM-ARM (e.g., the annotation
F-scores are 0.264, 0.254, respectively). However, rela-
tive to HEM-DTM, our HEM-ARM has significantly lower
time requirements, both for training (two orders of magni-
tude) and for annotation (one order of magnitude). These
results are explained by the differences in the graphical
structures of the models. The DT model has an observed
layer (which models the spectral content) and a hidden
layer (that encodes the temporal dynamics). As a conse-
quence, using DTMs can learn different frequency bases
that better adapt to specific tags, but requires marginaliza-
tion over the hidden variables — and hence delays — at
each training iteration and for inference at annotation. On
the opposite, the AR is a fully observable model. Hence,
training and annotation can be implemented efficiently by
computing sufficient statistics for each song a single time.

In addition, once songs are modeled with ARMs, we
investigate a kernel-SVM method upon these song-ARMs
for semantic retrieval, similar to the work done in [3] over
GMMs and in [17] over single ARs. We test several kernel
functions, some of which represent each song by the quan-
tized frequency responses (QFR) of its AR components.

The remainder of this paper is organized as follows. In
section 2 we present the autoregressive (mixture) model,
and in section 3 we derive the hierarchical EM algorithm
for ARMs. In Section 4 we present our kernel-SVM ap-
proach. In Section 5 we report our experiments.

2. THE AUTOREGRESSIVE MIXTURE MODEL

In this section we present the autoregressive (AR) model
and the autoregressive mixture (ARM) model for music
time series.

2.1 The AR model

A multivariate autoregressive (AR) model is a generative
time-series model for audio fragments. Given a time series
of T d−dimensional feature vectors x1:T ∈ Rd×T , the AR
model assumes each audio feature xt at time t is a linear
combination of the previous p audio features. Specifically,
the AR model is described by the equation

xt =

p∑
j=1

Ajxt−j + νt (1)

where {Aj}pj=1 are p transition matrices of dimension d×
d. νt is a driving noise process and is i.i.d. zero-mean
Gaussian distributed, i.e., νt ∼ N (0, Q), whereQ ∈ Rd×d
is a covariance matrix. The initial condition is specified by
x1 ∼ N (µ, S), where S ∈ Rd×d is a covariance matrix.
We can express (1) in a vectorial form:

xt = Ãxt−1
t−p + νt (2)

where Ã = [A1 . . . Ap] ∈ Rd×dp and xba = [x′b...x
′
a]′ ∈

Rdp×1. Note that, for convenience, we assume xt = 0 for
t ∈ {−p + 1, . . . , 0}, and hence assume that x1 triggered
the generation of the whole time series. An AR model is
hence parametrized by Θ = {µ, S, Ã,Q}. The likelihood
of a sequence x1:T is

p(x1:T |Θ) = N (x1|µ, S)

T∏
t=2

N (xt|
p∑
j=1

Ajxt−j , Q) (3)

where N (·|µ,Σ) is the pdf of a Gaussian distribution with
mean µ and covariance matrix Σ.

The parameters of an AR model can be estimated from a
time-series x1:T with various optimization criteria [17,18].

2.2 The ARM model

An ARM model treats a group of audio fragments as sam-
ples fromK AR models. Specifically, for a given sequence,
an assignment variable z ∼ categorical(π1, · · ·πK) se-
lects one of the K AR models, where the ith AR model is
selected with probability πi. Each mixture component is
specified by the parameters Θi = {µi, Si, Ãi, Qi}, and the
ARM model is specified by Θ = {πi,Θi}Ki=1. Whereas a
single AR model suffices to describe an individual audio
fragment, the ARM model is a more appropriate modeling
choice for an entire song. This is motivated by the ob-
servation that a song usually shows significant structural
variations within its duration, and hence multiple AR com-
ponents are necessary to model the heterogeneous sections.

The likelihood of an audio fragment x1:T under an ARM
model is

p(x1:T |Θ) =
K∑
i=1

πip(x1:T |z = i,Θi), (4)

where the likelihood of x1:T under the ith AR component
p(x1:T |z = i,Θi) is given by (3).



The parameters of an ARM model can be estimated
from a collection of audio-fragments using the expecta-
tion maximization (EM) algorithm [8], which is an itera-
tive procedure that alternates between estimating the as-
signment variables given the current estimate of the pa-
rameters, and re-estimating the parameters based on the
estimated assignment variables.

3. THE HEM ALGORITHM FOR ARM MODELS

In this paper we proposed to model tag distributions as
ARM models. One way to estimate a tag-level ARM model
is to run the EM algorithm directly on all the audio frag-
ments extracted from the relevant songs. However, this
approach would require excessive memory and computa-
tion time, to store all the input audio-sequences in RAM
and to compute their likelihood at each iteration. In or-
der to avoid this computational bottleneck, we propose a
novel hierarchical EM algorithm for ARM models (HEM-
ARM), which allows to learn ARM models using an effi-
cient hierarchical estimation procedure. In a first stage, in-
termediate ARM models are estimated in parallel for each
song, using the EM algorithm for ARMs on the song’s au-
dio fragments. Then, the HEM-ARM algorithm estimates
the final model by summarizing the common information
represented in the relevant song-ARMs. This is achieved
by aggregating together all the relevant song-ARMs into a
single big ARM model, and clustering similar AR models
together to form the final tag-level ARM model.

At a high level, the HEM algorithm consists in max-
imum likelihood estimation of the ARM tag model from
virtual samples distributed according to the song ARM mod-
els. However, since using the virtual samples can be ap-
proximated with a marginalization over the song ARM dis-
tribution (for the law of large numbers, see (8)), the estima-
tion is carried out in an efficient manner that requires only
knowledge of the parameters of the song models without
the need of generating actual samples. The HEM algorithm
was originally proposed by Vasconcelos and Lipmann [25]
to reduce a GMM with a large number of mixture com-
ponents to a compact GMM with fewer components, and
extended to DTMs by Chan et al. [5]. The HEM algo-
rithm has been successfully applied to the estimation of
GMM tag-distribution [23] and DTM tag-distribution [7].
We now derive the HEM algorithm for ARMs.

3.1 Derivation of the HEM for ARMs

Formally, let Θ(s) = {π(s)
i ,Θ

(s)
i }K

(s)

i=1 be an ARM model
with K(s) components, which pools together the ARM
models of all the songs relevant for a tag. The goal of the
HEM-ARM algorithm is to learn a tag-level ARM model
Θ(t) = {π(t)

j ,Θ
(t)
j }K

(t)

j=1 with fewer components
(i.e., K(t) < K(s)), that represents Θ(s) well. The likeli-
hood of the tag ARM Θ(t) is given by (4).

The HEM algorithm uses a set of N virtual samples
generated from the base model Θ(s), where theNi = Nπ

(s)
i

samples Xi = {x(i,m)
1:τ }

Ni
m=1 are from the ith component,

i.e., x(i,m)
1:τ ∼ Θ

(s)
i . We assume that samples within each

Xi are assigned to the same component of the tag model

Θ(t), and we denote the entire set of virtual samples with
X = {Xi}K

(s)

i=1 .
The log likelihood of the incomplete data under Θ(t) is

log p(X|Θ(t)) = log
K(s)∏
i=1

p(Xi|Θ(t))

= log
K(s)∏
i=1

K(t)∑
j=1

π
(t)
j p(Xi|Θ(t)

j ).

(5)

The HEM algorithm consists of the maximum likelihood
estimation of the parameters of Θ(t) from (5). Since (5) in-
volves marginalizing over the hidden assignment variables
z

(s)
i ∈ {1, . . . ,K(t)}, its maximization can be solved with

the EM algorithm. Hence, we introduce an indicator vari-
able zi,j for when the virtual audio sample set Xi is as-
signed to the jth component of Θ(t), i.e., when z(s)

i = j.
The complete data log-likelihood is then:

log p(X,Z|Θ(t)) =

=
K(s)∑
i=1

K(t)∑
j=1

zi,j log π
(t)
j + zi,j log p(Xi|Θ(t)

j )
(6)

The Q-function is obtained by taking the conditional
expectation of (6) with respect to Z, and the dependency
on the virtual samples is removed by using the law of large
numbers, i.e.,

log p(Xi|Θ(t)
j ) = Ni

1

Ni

Ni∑
m=1

log p(x
(i,m)
1:τ |Θ

(t)
j ) (7)

≈ NiEx1:τ |Θ(s)
i

[
log p(x1:τ |Θ(t)

j )
]
. (8)

Note that (8) can be computed using the chain rule of the
expected log-likelihood and (1) to break the expectation

E
x1:τ |Θ(s)

i

[
log p(x1:τ |Θ(t)

j )
]

= (9)

=
τ∑
t=1

E
x1:t|Θ(s)

i

[
log p(xt|x1:t−1,Θ

(t)
j )

]
(10)

=
τ∑
t=1

E
x1:t|Θ(s)

i

[
log p(xt|xt−p:t−1,Θ

(t)
j )

]
(11)

=

τ∑
t=1

E
x1:t−1|Θ(s)

i

[
E
xt|xt−p:t−1,Θ

(s)
i

[
,Θ

(t)
j

log p(xt|xt−p:t−1,Θ
(t)
j )

]] (12)

The inner expectation in (12) is the expected log-likelihood
of a Gaussian, and its closed form solution depends on the
first and second order statistics of xt−p,t−1 ∼ Θ

(s)
i . The

outer expectation involves the computation of the expected
first and second order statistics of Θ

(s)
i , which can be car-

ried out with the recursion presented in Algorithm 1. Note
that, since the AR model Θ

(t)
j has no hidden variables, the

computation of the expected sufficient statistics in Algo-
rithm 1 is independent of Θ

(t)
j , and hence needs to be exe-

cuted only once for each input component Θ
(s)
i .



Algorithm 1 Expected sufficient statistics

1: Input: song-level AR model Θ
(s)
i = {µ, S, Ã,Q}, length of

virtual samples τ .
2: Compute expected sufficient statistics for t = 1, . . . , τ − 1:

Ẽ
(i)
1 = E

x1Θ
(s)
i

[x1x
′
1] = µµ′ + S

Ê
(i)
1 = E

x−p+1:1Θ
(s)
i

[
x1
−p+1x

1
−p+1

′
]

=

=

[
Ẽ

(i)
1 0d×(d−1)p

0(d−1)p×d 0(d−1)p×(d−1)p

]
For t = 1, . . . , τ − 1

Ê
(i)
t = E

x1:t|Θ
(s)
i

[
xtt−p+1x

t
t−p+1

′
]

=

[
ÃÊ

(i)
t−1Ã

′ +Q AÊ
(i)
t−1

Ê
(i)
t−1Ã

′ Ê
(i)
t−1

]
(1:dp,1:dp)

Endfor
3: Compute expected sufficient statistics:

Ê(i) =
∑τ−1
t=1 Ê

(i)
t (13)

4: Output: expected sufficient statistics: Ê(i).

If hidden variables are present (which is the case for the
DT components of the DTM model, but not for the AR
model), computing the expected sufficient statistics of a
song component Θ

(s)
i involves marginalizing over the hid-

den variables of Θ
(t)
j , and hence needs to be repeated at

every iteration for each j = 1, . . . ,K(t).
The E-step of the HEM consists of computing of the ex-

pected sufficient statistics in Algorithm 1, the assignments
variables in (14) and (15), and the cumulative expected
sufficient statistics in (16). The M-step maximizes the Q-
function with respect to Θ(t), giving the updates in (17).
The full HEM-ARM scheme is presented in Algorithm 2.

4. KERNEL-SVM APPROACH

We then used a semi-parametric approach that leverages
the ARM model at the song level, and kernel support vector
machine (SVM) for retrieval. In particular, we first model
each song as an ARM using the EM algorithm. Then, for
each tag, we learn a binary SVM classifier over the train
set, based on a notion of similarity between ARM models
defined in terms on their proximity in parameter space. Fi-
nally, following [3], we use the SVMs’ decision values as
the relevance of a song for a tag, and use it for retrieval of
test songs based on one-tag queries.

Since the AR parameters lie on a non-linear manifold,
naı̈vely treating them as Euclidean vectors would not nec-
essary produce a correct similarity score. Hence, in the
remainder of this section, we present several kernel func-
tions based on more appropriate similarity scores between
autoregressive (mixture) models. In previous work, Meng
and Shawe-Taylor [17] specialize the Probability Product
Kernel [14] to the AR case, which depends non-linearly on
the AR parameters, and is define as:

KAR(Θa,Θb) =
∫
x1:p

(p(x1:p|Θa)p(x1:p|Θb))
ρ, (18)

where ρ = 0.5 corresponds to the Battaccharyya affinity.
Since a song-ARM is associated with several AR compo-

Algorithm 2 HEM algorithm for ARM

1: Input: combined song-level ARM {π(s)
i ,Θ

(s)
i }

K(s)

i=1 , num-
ber of virtual samples N .

2: Compute cumulative expected sufficient statistics Ê(i) for
each Θ

(s)
i using Algorithm 1

3: Initialize tag-level ARM, {π(t)
j ,Θ

(t)
j }

K(t)

j=1 .
4: repeat
5: {E-step}
6: Compute expected log-likelihood for each Θ

(s)
i and Θ

(t)
j :

`i|j= E
x1:τ |Θ

(s)
i

[log p(x1:τ |Θ(t)
j )]

= − dτ
2

log 2π − 1
2

log |S(t)
j |

− 1
2

traceS(t)
j

−1
[S

(s)
i + (µ

(t)
j − µ

(s)
i )′(µ

(t)
j − µ

(s)
i )]

− τ−1
2

traceQ(t)
j

−1
Q

(s)
i − τ−1

2
log |Q(t)

j |
− 1

2
trace[Q

(t)
j

−1
(Ã

(t)
j − Ã

(s)
i )Ê(i)(Ã

(t)
j − Ã

(s)
i )′]

7: Compute assignment probability and weighting:

ẑi,j =
π

(t)
j exp

(
Ni`i|j

)∑K(t)

j′=1 π
(t)

j′ exp
(
Ni`i|j′

) (14)

ŵi,j = ẑi,jNi = ẑi,jπ
(s)
i N (15)

8: Computed aggregated expectations for each Θ̂
(t)
j :

N̂j =
∑
i ẑi,j , M̂j =

∑
i ŵi,j ,

Ŝj =
∑
i ŵi,j [S

(s)
i + µ

(s)
i (µ

(s)
i )′] m̂j =

∑
i ŵi,jµ

(s)
i

V̂j =
∑
i ŵi,jA

(s)
i Ê(i)(Ã

(s)
i )′ P̂j =

∑
i ŵi,jÊ

(i)

R̂j =
∑
i ŵi,jÊ

(i)(Ã
(s)
i )′ Q̂j =

∑
i ŵi,jQ

(s)
i

(16)

9: {M-step}
10: Recompute parameters for each component Θ̂

(t)
j :

Ã∗j = R̂′jP̂
−1
j Q∗j = 1

(τ−1)M̂j
(V̂i −A∗j R̂j + Q̂j),

µ∗j = 1

M̂j
m̂j , S∗j = 1

M̂j
Ŝj − µ∗j (µ∗j )′,

π∗j =
∑K(s)

i=1 ẑi,j

K(s) .

(17)

11: until convergence
12: Output: tag-level ARM {π(t)

j ,Θ
(t)
j }

K(t)

j=1 .

nents, for retrieval we collect a decision value for each AR
component, and then rank the songs according to the aver-
age of the corresponding decision values (PPK-AR). Note
that we compute PPK between individual AR components
of the song-ARMs. This is different from [17], which uses
single ARs on individual audio snippets.

In addition, we experiment SVM classification in tan-
dem with a probability product kernel between auotore-
gressive mixture models (PPK-ARM). Following an ap-
proximation by Jebara et al. [14], the PPK-ARM can be
computed from the PPK between individual components
as

KARM(Θ(1),Θ(2)) =∑Ks
a=1

∑Ks
b=1 (π

(1)
a π

(2)
b )ρKAR(Θ

(1)
a ,Θ

(2)
b ).

(19)

We finally propose a novel descriptor of AR models
based on their frequency responses, and compute a ker-
nel between these descriptors. Since an AR is a linear time
invariant (LTI) system, its dynamics can be characterized



by a transfer function defined as:

H(s) = (Id −
∑p
j=1Ajs

−j)−1 ∈ Cd×d (20)

where s ∈ C is a complex number and Id is the d dimen-
sional identity matrix. The transfer function describes the
cross influences of each pair of components of the audio
feature vectors. In particular, we sample the transfer func-
tion at 200 equally spaced points on the unit circle, and
then sum the the absolute values of these matrices over
30 linearly spaced frequency bins, to get a representation
of the system’s frequency response. By concatenating the
AR’s µ parameter and the log values of these 30 frequency
response matrices, we get a descriptor ∆ ∈ R(d+30d2)×1,
which we call quantized frequency response (QFR). Fi-
nally, we use a SVM over QFRs based on cosine-similarity
(CS) kernel and radial basis function (RBF) kernel. 2

5. EXPERIMENTS

5.1 Data

We performed automatic music annotation on the CAL500
dataset (details in [23] and references therein), which is a
collection of 502 popular Western songs by as many differ-
ent artists, and provides binary annotations with respect to
a vocabulary of semantic tags. In our experiments we con-
sider the 97 tags associated to at least 30 songs in CAL500
(11 genre, 14 instrumentation, 25 acoustic quality, 6 vocal
characteristics, 35 mood and 6 usage tags).

The acoustic content of a song (resampled at 22, 050Hz)
is represented by computing a time-series of 34-bin Mel-
frequency spectral (MFS) features, extracted over half over-
lapping windows of 92 msec of audio signal, i.e., every ∼
46 msec. Following the insight in recent work of Hamel et
al. [12], MFS features where further projected on the first
d = 20 principal components, which we estimated over
the MFSs collected from the 10, 870 songs in the CAL10K
dataset [22].

Song level ARMs were learned with K = 4 compo-
nents and memory of p = 5 steps, from a dense sampling
of audio fragments of length T = 125 (i.e., approximately
6s), extracted with 80% overlap.

5.2 Results with HEM-ARM

For each tag, all the relevant song ARMs were pooled to-
gether to form a big ARM, and a tag-level ARM with
K(t) = 8 components was learned with the HEM-ARM
algorithm (with N = 1000 virtual samples of length τ =
10). To reduce the effects of low likelihood in high di-
mension, for annotation we smooth the likelihood (3) by
T · d · p. We compare our HEM-ARM with hierarchically
trained Gaussian mixture models (HEM-GMM) [23] and
dynamic texture mixture models (HEM-DTM) [7].

On the test set, a novel test song is annotated with the 10
most likely tags, corresponding to the peaks in its semantic
multinomial. Retrieval given a one tag query involves rank

2 The CS kernel is defined as K(a, b) = a′b/
√
||a||2||b||2. The RBF

kernel is defines as K(a, b) = exp{−‖a− b‖22/σ}. We set the band-
width σ of the RBF kernel to the descriptor dimension dim(∆).

annotation retrieval time
P R F AROC MAP P@10 train test

HEM-ARM 0.468 0.203 0.254 0.696 0.421 0.412 198m 41m
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460 424h 482m
HEM-GMM 0.474 0.205 0.213 0.686 0.417 0.425 41m 38m

Table 1. Annotation and retrieval on CAL500, for HEM-
ARM, HEM-DTM and HEM-GMM.

ordering all songs with respect to the corresponding entry
in their semantic multinomials. Annotation is measured
with average per-tag precision (P), recall (R), and f-score
(F). Retrieval is measured by per-tag area under the ROC
(AROC), mean average precision (MAP), and precision at
the first 10 retrieved objects (P@10). Refer to [23] for a
detailed definition of the metrics. All reported metrics are
the result of 5 fold-cross validation.

In Table 1 we report annotation and retrieval results for
HEM-ARM, HEM-DTM and HEM-GMM. In addition, we
register the total time for the training stage, which consist
in the estimation of the 97 tag models over the 5 folds (and
also includes the estimation of the 502 song-level models),
as well as for the test stage, i.e., the automatic-annotation
of the 502 songs with the 97 tags.

From Table 1 we note that the advantages of the pro-
posed HEM-ARM relative to HEM-DTM are in terms of
computation efficiency. While HEM-DTM performs better
than HEM-ARM on each metric (except on annotation pre-
cision where HEM-ARM is better), HEM-ARM has sig-
nificantly lower time requirements. Specifically, the train-
ing time for our HEM-ARM is two orders of magnitude
lower than that for HEM-DTM. Similarly, our auto-tagger
requires approximately 42 minutes for the test-stage, while
the auto-tagger based on DTMs requires 482 minutes to
accomplish the same task. These results are explained by
comparing the graphical structures of the AR and DT mod-
els. While the AR is a fully observable model, the DT con-
sists of an observed layer, which model the spectral con-
tent, and a hidden layer that encodes the temporal dynam-
ics. Hence, DTMs have the advantage of learning different
frequency basis to best represent specific tags [7]. How-
ever, the computation of the (expected) sufficient statistics
with respect to each DT component requires marginaliza-
tion of the hidden variables (see [5]). Hence, during train-
ing, it needs to be executed at each iteration of the learning
algorithms for each input datum (i.e., audio-fragments for
EM, and DTs for HEM) and for each individual compo-
nent of the learned model; during annotation, it needs to
be repeated for each audio-fragment and each DT compo-
nent of the tag models. On the opposite, the corresponding
statistics for ARMs involve no marginalization of hidden
variables. Hence, during training, they need to be com-
puted only a single time for each input datum (i.e., audio-
fragments for EM, and ARs for HEM). In addition, during
annotation, the sufficient statistics can be collected a single
time for each song.

Finally, HEM-ARM performs favorably relative to HEM-
GMM (which does not model temporal dynamics), while
still requiring limited computation times. Since learning
and inference are performed efficiently, HEM-ARM can
leverage higher order memories to model temporal dynam-



p 1 2 3 4 5 6 7 8 9

F-score 0.234 0.247 0.252 0.255 0.254 0.245 0.244 0.242 0.237
AROC 0.650 0.672 0.686 0.693 0.696 0.695 0.694 0.695 0.694

Table 2. Annotation (F-score) and retrieval (AROC) per-
formance of HEM-ARM, for different memories p∈ [1:9].

kernel AROC MAP P@10 train test

ARM based

PPK-ARM 0.717 0.448 0.459 233m 194m
PPK-AR 0.727 0.463 0.484 287m 194m
QFR-CS 0.717 0.461 0.479 125m 65m
QFR-RBF 0.723 0.469 0.488 137m 74m

GMM-PPK [3] 0.696 0.436 0.454
MFCC-PPK-AR [17] 0.706 0.447 0.463

Table 3. Retrieval for the kernel-SVM approach. Includ-
ing train and test times

ics, without incurring in large delays. In particular, in Table
2 we plot annotation (F-score) and retrieval (AROC) per-
formance as a a function of the memory p of the AR mod-
els. Performance are fairly stable for p = 4, 5, 6. Shorter
memories (e.g., p = 1, 2, 3) do not suffices to capture the
interesting dynamics, while too large values deteriorate an-
notation performance.

5.3 Results with kernel-SVM.

We implemented the kernel-SVM approach as described
in Section 4. In particular, we learned song-ARMs with
K = 4 components and memory p = 5, estimated from
the d = 20 dimensional PCA-MFS features. We then
computed the QFR-CS and QFR-RBF kernels based on
the QFR descriptors, the PPK kernel between ARM (PPK-
ARM), and the PPK kernel between individual AR com-
ponents (PPK-AR). For comparison, we also considered
PPK similarity between song-GMMs estimated on MFCC
features [3] (GMM-PPK) and PPK similarity between sin-
gle AR models estimated on the MFCC features of entire
songs as proposed in [17] (MFCC-PPK-AR). We used the
LibSVM software package [6] for the SVM, with all pa-
rameters selected using validation on the training set.

Retrieval scores are reported in Table 3, and are result
of 5-fold cross validation. We note that these results are
generally superior to those in Table 1, since the SVM is a
discriminative algorithm and hence tends to be more robust
on strongly labeled datasets such as CAL500. In particu-
lar, the best performance was registered with the QFR-RBF
and PPK-AR systems (score differences between them are
not statistically significant). In addition, PPK similarity
on ARMs (PPK-ARM) proves less performant, suggesting
that the approximation in (19) may be not enough accurate
for our task. Finally, PPK similarity on GMM performs the
worst, since it does not leverage termporal dynamics, and
MFCC-AR-PPK, which doesn’t leverage mixtures, is also
significantly behind.

6. DISCUSSION

In this paper we have proposed the ARM model for mu-
sic auto-tagging. We have derived a hierarchical EM algo-
rithm for efficiently learning tag ARMs. We have showed
that our HEM-ARM can estimate tag models significantly
more efficiently than HEM-DTM, at the price of a small re-

duction in performance. We have also successfully tested
a kernel-SVM approach based on several similarity func-
tions based on the ARM model.
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