






JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 14

50 100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

codewords

p
er

ce
n

t

 

 

codeword 50

50 100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

codewords

p
er

ce
n

t

 

 

codeword 200

50 100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

codewords

p
er

ce
n

t

 

 

codeword 350

50 100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

0.6

0.8

1

codewords

p
er

ce
n

t
 

 

codeword 500

Fig. 11: Confusion of four example BoS codewords with BoS tree
codewords.
Figure 10 shows the differences in codeword assignment for
videos in UCLA-39. On average, 44.2% of the patches are
assigned to different codewords in BoS and BoST.

To evaluate how this affects classification, we next allow a
patch to be assigned to codewords from videos in the same
class (16 codewords). Figure 10 also plots the percentage of
disagreement of patches assigned to codewords of different
classes. At the class-level, 35.5% of patches are assigned to
codewords of videos in another class. Hence, for the patches
that are assigned differently, about 8.7% are assigned to
codewords belonging to videos in the same class.

To examine the misassignment of patches, we compute the
confusion matrix between BoS and BoST codewords where the
(i, j) entry is obtained by counting all patches assigned to the
ith codeword in the BoS codebook and the jth codeword in the
BoST codebook. Figure 11 shows four typical example rows
of the confusion matrix, representing confusion between a
particular BoS codeword (actual) and all the BoST codewords
(assigned). The peak in each plot indicates the percentage
of correct assignments for the codeword (on average 55.8%),
which is surrounded by assignments to within-class codewords
(on average 8.7%). The remaining assignments (on average
35.5%) are spread uniformly at random to the out-of-class
codewords.8

In summary, from the analysis in this section, we can
conclude that the BoS Tree can successfully generate a de-
scriptor that is equivalent to the original BoS descriptor, for
the purposes of classification. At the low-level, the BoS Tree
introduces uniform random noise to the descriptor. However,
this does not affect the structure of the kernel/distance ma-
trices. Therefore, the BoST descriptor can be used in place
of BoS in order to decrease the computational requirements,
while maintaining similar levels of classification accuracy.

7 CONCLUSIONS
In this paper we have proposed the BoS Tree, which effi-
ciently indexes DT codewords of a BoS representation using
a hierarchical indexing structure. The BoS Tree enables the
practical use of larger and richer collections of codewords in
the BoS representation. We demonstrated the efficacy of the
BoS Tree on video classification of four datasets, as well as

8. To show that the confusion among out-of-class codewords is close to
a uniform distribution, we first aggregated the out-of-class confusions in all
codewords to form an overall distribution of confusion. The entropy of this
distribution was 8.9, which is close to the maximum possible value of 9.3 for
a uniform distribution.

on annotation of a music and video dataset. In particular, the
BoS Tree achieves similar accuracy to the direct-indexed large
BoS, while reducing the computation by almost an order of
magnitude. Finally, we showed that, although the BoS Tree
and BoS descriptors are different for the same video, the
overall kernel (distance) matrices are highly correlated thus
leading to similar classification performance. In particular,
the BoS Tree adds uniform random noise to the descriptor,
which does not significantly affect the structure of the kernel
matrix. Finally, extending [22] to perform nearest-neighbor
search based on log-likelihoods (rather than KL divergence)
or adapting approximate search using randomized trees [19]
to time-series (using DTs) would be interesting future work.
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